Патенты автора Турбаков Михаил Сергеевич (RU)

Изобретение относится к интенсификации добычи нефти из терригенных коллекторов с помощью волнового воздействия на призабойную зону пласта. Способ включает этапы: получение характеристик продуктивного пласта, создание трехмерной механической модели геологической среды на основании характеристик продуктивного пласта, проектирование интенсификации с использованием созданной механической модели геологической среды, калибровка проекта интенсификации на основе реальных данных, моделирование запроектированной интенсификации и прогнозирование добычи, оценка запроектированной интенсификации. На этапе создания трехмерной механической модели геологической среды моделирование выполняют с использованием мелкомасштабной сетки. На этапе проектирования интенсификации выполняют механическое моделирование распространения упругих колебаний на мелкомасштабной сетке; определяют изменение проницаемости до точки затухания упругих колебаний в пласте, прогнозирование изменения дебита добывающей скважины после волнового воздействия выполняют на крупномасштабной сетке. Техническим результатом изобретения является повышение точности прогнозирования интенсификации добычи нефти. 3 ил.

Изобретение относится к буровой технике и может быть использовано при строительстве наклонно-направленных и горизонтальных скважин на труднодоступных месторождениях, в том числе Арктическом шельфе. Модульная управляемая система роторного бурения скважин малого диаметра включает модуль электропитания, модулированный блок управления и модуль отклонения, содержащий гидравлические отклоняющие механизмы с упорными лопатками, электрическими катушками и магнитами. Каждый отклоняющий механизм соединен через распределительное устройство с источником бурового раствора под давлением. Распределительное устройство соединено с блоком управления и выполнено с возможностью модулирования давления жидкости, подаваемого на отклоняющие механизмы при вращении модуля отклонения. К модулю отклонения дополнительно подключены модуль телеметрии, модуль каротажа и модуль обмена данными с устьем скважины посредством унифицированных переходников. Модуль каротажа и модуль обмена данными с устьем скважины выполнены с возможностью отсоединения от модуля отклонения с сохранением его функционирования. Модулированный блок управления расположен в модуле телеметрии. Техническим результатом является повышение универсальности системы и расширение спектра оборудования, применяемого совместно. 3 ил.

Изобретение относится к направленному бурению нефтяных и газовых скважин. Способ роторного бурения скважин модульной управляемой системой малого диаметра включает бурение скважины или бокового ствола с наклонным пространственно-ориентированным профилем в продуктивном пласте с применением модульной системы роторного бурения, включающей модуль телеметрии и модуль каротажа. Предварительно проводят исследования условий залегания горных пород при помощи сейсмических исследований. В процессе бурения одновременно контролируют положение траектории скважины и производят геофизические исследования в скважине. По данным геофизических исследований определяют угол напластования горных пород в режиме реального времени. По данным телеметрии определяют зенитный угол бурения скважины. Затем по значениям угла напластования и зенитного угла вычисляют угол вскрытия пласта, сравнивают вычисленный угол вскрытия с проектным углом вскрытия пласта, полученным в ходе предварительных исследований условий залегания горных пород. В случае отклонения его от проектного производят корректировку зенитного угла бурения скважины с учетом угла напластования горных пород в зависимости от геологического строения горного массива. Техническим результатом является повышение точности бурения наклонно-ориентированных скважин. 1 ил.

Изобретение относится к области бурения скважин и может быть использовано для коммутации электрических цепей скважинного оборудования при бурении наклонно-направленных и горизонтальных скважин. Узел герметичного кабельного соединения скважинного оборудования системы управления буровым устройством включает пустотелый металлический цилиндрический корпус, закрепленную на корпусе уплотнительную гайку, эластомер и герметично зафиксированные внутри корпуса кабель и электрический проводник. Кабель и электрический проводник зафиксированы с помощью залитого в корпус эластомера, выполненного из полиуретана с возможностью расширения при полимеризации. При этом на внутреннюю поверхность корпуса и изоляционную оболочку электрического проводника нанесен адгезив. Техническим результатом изобретения является повышение надежности работы узла герметичного кабельного соединения скважинного оборудования системы управления буровым устройством в условиях высоких давлений, температур и вибраций, а также обеспечение возможности применения конструкции узла герметичного кабельного соединения с малыми габаритами для коммутации электрических цепей скважинного оборудования. 1 ил.

Изобретение относится к буровой технике и может быть использовано при бурении скважин, а именно наклонно-направленных скважин с протяженным горизонтальным участком, в частности, для разработки труднодоступных запасов углеводородов. Система управления буровым устройством включает корпус, имеющий ось, размещенный в корпусе с возможностью вращения вал, состоящий из ведущего и ведомого валов, соединенных с помощью шарнира, на ведомом валу установлен радиально-упорный подшипник с возможностью поддержания его коллинеарным с осью корпуса, исполнительный орган и механизм перемещения, установленные с возможностью обеспечения отклонения вала от оси корпуса. Система дополнительно снабжена центратором, жестко соединенным с корпусом, размещенными в корпусе электронным модулем с электрической цепью и вращающимся контактным устройством, соединенным с электронным модулем через электрическую цепь. Вал снабжен вторым шарниром, образуя промежуточный вал между ведущим и ведомым валами. Шарниры работают в масляной ванне. Ведомый вал снабжен вторым радиально-упорным подшипником, установленным вблизи торца корпуса. Исполнительный орган содержит три клина и три индуктивных датчика перемещения, механизм перемещения исполнительного органа выполнен в виде трех электрических двигателей с планетарными редукторами, расположенных под углом 120 градусов относительно друг друга. Каждому электрическому двигателю соответствует клин, установленный с возможностью перемещения в обе стороны с обеспечением отклонения вала от оси корпуса. На каждом клине установлен индуктивный датчик перемещения. Обеспечивается повышение надежности системы управления буровым устройством, повышение точности позиционирования долота для проведения скважины по заданной траектории. 4 ил.

Изобретение относится к буровой технике и может быть использовано при бурении скважин, а именно наклонно-направленных скважин с протяженным горизонтальным участком. Блок отклонения системы управления буровым устройством включает корпус, имеющий ось, размещенный в корпусе с возможностью вращения вал, состоящий из ведущего и ведомого валов, соединенных с помощью шарнира, на ведомом валу установлен радиально-упорный подшипник с возможностью поддержания его коллинеарным с осью корпуса, исполнительный орган и механизм перемещения, установленные с возможностью обеспечения отклонения вала от оси корпуса. Вал снабжен вторым шарниром, образуя промежуточный вал между ведущим и ведомым валами. Ведомый вал снабжен вторым радиально-упорным подшипником, установленным вблизи торца корпуса. Исполнительный орган содержит три клина-отклонителя и три датчика перемещения. Механизм перемещения исполнительного органа выполнен в виде трех шаговых двигателей, расположенных под углом 120 градусов друг относительно друга. Каждому шаговому двигателю соответствует клин-отклонитель, установленный с возможностью перемещения в обе стороны с обеспечением отклонения вала от оси корпуса, и на каждом клине-отклонителе установлен датчик перемещения. Обеспечивается повышение надежности блока отклонения системы управления буровым устройством, повышение точности позиционирования долота для проведения скважины по заданной траектории. 3 ил.

Изобретение относится к скважинным телеметрическим системам, используемым при бурении скважин, а именно к трубе с проводной линией, такой как бурильная труба, которая приспособлена для передачи данных и/или энергии между одним или несколькими участками внутри ствола скважины и поверхностью. Система передачи информации о пространственном расположении на расстояние в скважине через колонну стыкующихся труб содержит электрические проводники, расположенные вдоль тела труб, и элементы бесконтактной связи, расположенные на ниппеле и муфте замка стыкующихся труб и выполненные в виде трансформатора, первичная и вторичная обмотки которого размещены в кольцевых проточках, расположенных соответственно на ниппеле и муфте стыкующихся труб. Между первичной и вторичной обмотками трансформатора стыкующихся труб нанесена электропроводящая смазка для снижения магнитного сопротивления. Технический результат, который может быть получен при осуществлении изобретения, заключается в повышении надежности, эффективности передачи сигнала и снижении допусков при выполнении труб. 1 ил.

Изобретение относится к нефтегазодобывающей промышленности, в частности к устройствам для передачи информации между забоем и устьем, и может быть использовано для определения направления бурения скважин с горизонтальным участком, в том числе непосредственно в процессе бурения роторным способом. Телеметрическая система мониторинга ствола скважины содержит измерительный модуль, включающий датчики, например инклинометрические, модуль электропитания, передающий модуль, формирующий импульсы давления промывочной жидкости для передачи информации по гидравлическому каналу связи. Наземное оборудование содержит приемное устройство, соединенное с датчиком промывочной жидкости, установленным в нагнетательной линии бурового раствора. Все модули установлены в герметичном внутреннем корпусе, сцентрированном во внешнем корпусе телеметрической системы, между внешним и внутренним корпусами выполнен кольцевой зазор для прохождения бурового раствора. Во внутреннем корпусе размещена плата управления, связывающая передающий модуль и измерительный модуль. Модуль электропитания содержит аккумуляторы и генератор, установленный в отдельном корпусе, имеющем верхнюю муфтовую часть, нижняя часть корпуса генератора соединена с внутренним корпусом и внешним корпусом системы. В корпусе генератора выполнено отверстие для прохождения бурового раствора. Генератор имеет проводное соединение с платой управления. Передающий модуль дополнительно включает кабельный канал передачи данных, для этого в стенке корпуса генератора предусмотрен паз для прокладки кабеля от платы управления до передающего модуля, а на верхней муфтовой части расположена индуктивная катушка, предназначенная для передачи данных от корпуса генератора до кабельного канала передачи данных посредством возбуждения электромагнитной индукции. Технический результат - повышение скорости передачи данных, а также повышение надежности системы. 4 ил.

Изобретение относится к области роторного бурения скважин и может быть использовано при бурении наклонно направленных и горизонтальных скважин. Устройство обеспечения геостационарности навигационного оборудования телеметрической системы мониторинга траектории ствола скважины включает пустотелый цилиндрический герметичный корпус, содержащий основание, выполненное с возможностью вращения. На основании установлены навигационные датчики. В корпусе установлены датчик частоты вращения, моментный двигатель, в статоре моментального двигателя выполнено цилиндрическое отверстие, в которое установлены токопровод и первая втулка, соединенная с основанием. С обеих сторон корпуса расположены два амортизатора с прокладками. Первый амортизатор с одной стороны закреплен на моментном двигателе, а с другой стороны выполнен с возможностью жесткого соединения, например, с оборудованием телеметрической системы. Вторая втулка содержит подшипник вращения, жестко связана со вторым амортизатором и через подшипник вращения соединена с основанием. Второй амортизатор выполнен с возможностью жесткого соединения, например, с силовой частью компоновки низа бурильной колонны. Жесткость амортизационных прокладок в поперечном направлении превышает продольную. Техническим результатом является повышение надежности работы устройства, повышение стабильности геостационарного положения навигационных датчиков, повышение точности определения пространственного положения бурового инструмента. 1 ил.
Изобретение относится к области нефтяной и газовой промышленности, а также к области эксплуатации подземных вод водозаборными скважинами. Для осуществления способа щелевой гидропескоструйной перфорации определяют местоположения резов, спускают в скважину гидропескоструйный перфоратор с опрессовочным узлом, подают в перфоратор абразивную жидкость, перфорируют хотя бы один рез на двух режимах, перекрывают каналы струйных насадок перфоратора, промывают скважину и поднимают гидропескоструйный перфоратор с опрессовочным узлом. Местоположение резов определяют в соответствии с направлением линий максимального напряжения горных пород. Перед спуском в скважину между опрессовочным узлом и перфоратором на одной оси с перфоратором устанавливают блок ориентации. Ориентацию полученной компоновки осуществляют после ее спуска в скважину и перед проведением перфорации путем спуска в блок ориентации гироскопического инклинометра и установки его соосно блоку ориентации. С помощью гироскопического инклинометра определяют положение струйных насадок в пространстве, определяют угол необходимого поворота перфоратора, при котором плоскость, проходящая через оси двух противолежащих насадок, будет располагаться вдоль линий максимального напряжения горных пород. Колонну НКТ с перфоратором поворачивают на данный угол. Обеспечивается повышение эффективности гидропескоструйной перфорации. 2 з.п. ф-лы.

Изобретение относится к устройствам для создания щелевых отверстий в обсадных колоннах, цементном камне и горной породе. Гидропескоструйный перфоратор содержит корпус с отверстиями, в которых установлены струйные насадки, размещенную в корпусе подвижную втулку, связанную с запорным элементом, соединенным с подвижным стержнем, седло запорного элемента, установленное в патрубке, соединенном с корпусом. Подвижный стержень соединен с подпружиненным подвижным стаканом, в торцевой части которого выполнены отверстия. В отверстия подвижного стакана установлены втулки, закрепленные с помощью прижима. Струйные насадки расположены вдоль корпуса по спирали. В подвижной втулке выполнен паз, в который заведен конец пробки, установленной в отверстии корпуса. Пружина подвижного стакана отделена от подвижного стержня трубчатыми элементами. Обеспечивается повышение надежности работы перфоратора. 4 ил.

Изобретение относится к устройствам для виброволнового воздействия на призабойную зону пласта и может быть использовано при добыче жидких и газообразных углеводородов для поддержания пластового давления путем закачки в продуктивный пласт через него рабочего агента. Устройство обеспечивает высокую эффективность виброволновой обработки призабойной зоны пласта путем периодического воздействия на нее волновыми импульсами гидравлических ударов рабочей жидкости заданной частоты, а также исключения спускоподъемных операций и простоя скважины. Устройство содержит жестко закрепленный стакан (1) с косыми щелевидными прорезями (2) и крепежной резьбой (3) в верхней части для соединения с насосно-компрессорными трубами (не показаны). Внутренний диаметр стакана (1) обозначен d. В донной части (4) стакана (1) имеется цилиндрическое отверстие (5) диаметром d1. С внешней стороны стакана (1) установлен цилиндрический золотник (6) с косыми щелевидными прорезями (7). На золотнике (6) прорези выполнены в противоположном направлении относительно прорезей (2) стакана (1), что образует турбинное устройство, у которого направляющим аппаратом являются прорези (2) стакана (1), а рабочим колесом - прорези (7) золотника (6). Золотник (6) установлен на шариковых опорах (8). Для снижения утечек рабочей жидкости используется фторопластовое кольцо (9). Шар (10) диаметром d2 имеет сквозные каналы (11) в трех взаимно перпендикулярных плоскостях. Шар (10) обеспечивает перекрытие проходного донного отверстия (5) и направление жидкости в рабочие отверстия устройства, 2 ил.

Изобретение относится к системам промышленного водоснабжения системы поддержания пластового давления (ППД). Система промысловой подготовки воды содержит насосную станцию с приводным электродвигателем (1), центробежным (2) и струйным (3) насосами, всасывающий (6) и напорный (7) коллекторы с задвижками, трубы, обратный клапан (8). Труба (12) с задвижками (10) соединяет всасывающий коллектор (6) и струйный насос (3). Труба (13) с задвижками (11) соединяет напорный коллектор (7) и струйный насос (3). Труба (14) служит для сброса воды в водоем. Всасывающий коллектор (6) оснащен сетчатым фильтром (9) и закреплен вертикальными стойками (16) на дне водоема. Струйный насос (3) установлен с возможностью создания разрежения во всасывающем коллекторе (6). Достигается повышение надежности работы за счет обеспечения движения воды на вход центробежного насоса струйным насосом, исключения возможности затопления насосной станции, а также исключения вероятности замерзания воды во всасывающем коллекторе. 2 ил.

Изобретение относится к эксплуатации трубопроводных систем, в частности к очистке внутренней поверхности трубопроводов от асфальтеносмолопарафиновых отложений. Устройство включает корпус, выполненный в виде пустотелой вытянутой полусферы из эластичного материала, с тыльной части корпуса выполнен углубленный вырез. По оси вращения устройства установлена сквозная металлическая трубка. С наружной стороны корпуса на металлическую трубку навинчена фигурная гайка, на которую насажены фторопластовые шайбы и фторопластовая манжета. Поверх манжеты закреплены фторопластовая втулка и полая лопасть, зафиксированные гайкой. Каналы лопасти связаны с внутренней полостью трубки через отверстия, выполненные по всему диаметру трубки. Фторопластовые манжета и втулка имеют отверстия, совмещенные с отверстиями в трубке. На противоположных сторонах лопасти расположены отверстия. Техническим результатом является повышение качества очистки внутренней поверхности трубопровода, повышение надежности работы устройства, упрощение конструкции устройства и процесса очистки. 2 ил.

Изобретение относится к нефтегазовой промышленности, а именно к способам борьбы с асфальтено-смоло-парафиновыми отложениями при добыче парафинистой нефти. Способ депарафинизации нефтедобывающей скважины включает создание в зоне отложения парафина температуры, превышающей температуру плавления парафина, путем закачки в скважину взаимодействующих с выделением тепла компонентов, вынос продуктов реакции и расплавленного парафина из насосно-компрессорных труб. Предварительно строят кривые распределения температуры скважинного потока в интервалах эксплуатационной колонны от забоя до приема насоса и колонны насосно-компрессорных труб от насоса до устья с учетом определения температуры жидкости на выкиде насоса, кривые распределения давления в скважине в указанных выше интервалах и кривые распределения температуры насыщения нефти парафином в скважине с учетом изменения давления в скважине и газосодержания нефти в процессе подъема газожидкостной смеси согласно формуле: tнi=tнд+A1·Pi/Pнас-A2Гi/Г0, где tнi - температура насыщения нефти парафином в скважине; tнд - температура насыщения дегазированной нефти; Pi - ряд последовательных значений давления в заданном интервале, МПа; Pнас - давление насыщения нефти газом; Гi - газонасыщенность нефти при соответствующих значениях давления Pi и температуре Ti, м3/м3; Г0 - газосодержание нефти при давлении Pнас; A1 и A2 - корреляционные коэффициенты, зависящие от состава и свойств нефти. По построенным кривым распределения в точке пересечения температуры скважинного потока и температуры насыщения нефти парафином определяют глубину и термодинамические условия интенсивной парафинизации в скважине. Далее с учетом определяемых условий подбирают количество и концентрацию компонентов для выноса расплавленного парафина. Технический результат - повышение эффективности борьбы с асфальтено-смоло-парафиновыми отложениями. 1 ил., 1 табл.

 


Наверх