Телеметрическая система мониторинга ствола скважины



Телеметрическая система мониторинга ствола скважины
Телеметрическая система мониторинга ствола скважины

Владельцы патента RU 2646287:

федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" (RU)

Изобретение относится к нефтегазодобывающей промышленности, в частности к устройствам для передачи информации между забоем и устьем, и может быть использовано для определения направления бурения скважин с горизонтальным участком, в том числе непосредственно в процессе бурения роторным способом. Телеметрическая система мониторинга ствола скважины содержит измерительный модуль, включающий датчики, например инклинометрические, модуль электропитания, передающий модуль, формирующий импульсы давления промывочной жидкости для передачи информации по гидравлическому каналу связи. Наземное оборудование содержит приемное устройство, соединенное с датчиком промывочной жидкости, установленным в нагнетательной линии бурового раствора. Все модули установлены в герметичном внутреннем корпусе, сцентрированном во внешнем корпусе телеметрической системы, между внешним и внутренним корпусами выполнен кольцевой зазор для прохождения бурового раствора. Во внутреннем корпусе размещена плата управления, связывающая передающий модуль и измерительный модуль. Модуль электропитания содержит аккумуляторы и генератор, установленный в отдельном корпусе, имеющем верхнюю муфтовую часть, нижняя часть корпуса генератора соединена с внутренним корпусом и внешним корпусом системы. В корпусе генератора выполнено отверстие для прохождения бурового раствора. Генератор имеет проводное соединение с платой управления. Передающий модуль дополнительно включает кабельный канал передачи данных, для этого в стенке корпуса генератора предусмотрен паз для прокладки кабеля от платы управления до передающего модуля, а на верхней муфтовой части расположена индуктивная катушка, предназначенная для передачи данных от корпуса генератора до кабельного канала передачи данных посредством возбуждения электромагнитной индукции. Технический результат - повышение скорости передачи данных, а также повышение надежности системы. 4 ил.

 

Изобретение относится к нефтегазодобывающей промышленности, в частности к устройствам для передачи информации между забоем и устьем и может быть использовано для определения направления бурения скважин с горизонтальным участком, в том числе непосредственно в процессе бурения роторным способом.

Известна забойная телеметрическая система с двунаправленным гидравлическим каналом связи, содержащая скважинный прибор, инициатор импульсов давления в буровом растворе и наружный корпус, являющийся одновременно бурильной трубой, в которой центраторы скважинного прибора имеют резинометаллическую конструкцию на каждом модуле, причем все модули связаны между собой с помощью быстроразъемных герметичных электрических соединений, а инициатор импульсов давления снабжен встроенным датчиком определения циркуляции бурового раствора, выполнен на основе роторного клапана возвратно-поворотного типа, размещенного в коротком циркуляционном переводнике, и подсоединен к скважинному прибору с помощью кабеля, размещенного в герметичном корпусе с многоконтактным разъемом (патент RU №152446, кл. Е21В 47/20, опубл. 27.05.2015, бюл. №15).

Недостатками данной телеметрической системы являются:

- ограниченный ресурс работы системы из-за отсутствия электрического генератора;

- резинометаллические центраторы подвергаются быстрому изнашиванию буровым растворов, что снижает надежность системы.

Известна телеметрическая система для управления бурением скважины, содержащая скважинное измерительное устройство с блоком измерительных преобразователей, наземное устройство, включающее источник дистанционного электропитания и приемное устройство, скважинный источник питания, а также кабельный канал связи для передачи информации с забоя на поверхность и наоборот (патент RU №2211922, кл. Е21В 47/12 Е21В 47/02, опубл. 10.09.2003, бюл. №25).

Недостатком известной системы является ее низкая надежность, вследствие того, что телеметрическая система содержит один канал связи с поверхностью, в случае повреждения которого необходима остановка бурения и подъем бурильного инструмента для поиска неисправностей.

Наиболее близким к заявляемому изобретению является телеметрическая система контроля забойных параметров, содержащая измерительный модуль, модуль электропитания и передающий модуль, использующий для передачи электромагнитный канал связи, и дополнительный передающий модуль, формирующий импульсы давления промывочной жидкости для передачи информации по гидравлическому каналу связи. Все модули сцентрированы в корпусе телеметрической системы, состоящем из двух частей с электрическим разделителем, образующим диполь, и закреплены, причем передающий модуль, использующий для передачи информации электромагнитный канал связи, установлен на контактных центраторах, таким образом, чтобы электрический разделитель находился между ними. Наземное оборудование содержит приемное устройство, один вход которого соединен с антенной, а другой - с датчиком давления промывочной жидкости, установленным в нагнетательной линии бурового раствора (патент RU №2194161, опубл. 10.12.2002). Данная система принята за прототип.

Признаки прототипа, совпадающие с существенными признаками заявляемого изобретения: внешний корпус; измерительный модуль, включающий датчики, например инклинометрические, модуль электропитания, содержащий аккумуляторы, передающий модуль, формирующий импульсы давления промывочной жидкости для передачи информации по гидравлическому каналу связи; наземное оборудование, содержащее приемное устройство, соединенное с датчиком промывочной жидкости, установленным в нагнетательной линии бурового раствора.

Недостатками системы, принятой за прототип, являются:

- измерительный, передающий и электропитающий модули установлены на центраторах, обеспечивающих прохождение бурового раствора, при этом центраторы подвержены износу абразивными частицами в буровом растворе, что снижает надежность и срок службы системы, а также нарушается точность измерений скважинного прибора;

- дополнительный электромагнитный канал связи (дублирующий передачу информации) обладает низкой скоростью передачи информации, что снижает скорость строительства скважины;

- модуль электропитания представляет собой аккумуляторы, которые ограничивают срок работы системы без извлечения на поверхность.

Задачей предлагаемого изобретения является повышение скорости передачи данных, а также повышение надежности системы.

Поставленная задача была решена за счет того, что в известной телеметрической системе мониторинга ствола скважины, содержащей внешний корпус, измерительный модуль, включающий датчики, например инклинометрические, модуль электропитания, содержащий аккумуляторы, передающий модуль, формирующий импульсы давления промывочной жидкости для передачи информации по гидравлическому каналу связи, наземное оборудование, содержащее приемное устройство, соединенное с датчиком промывочной жидкости, установленным в нагнетательной линии бурового раствора, согласно изобретению все модули установлены в герметичном внутреннем корпусе, сцентрированном во внешнем корпусе телеметрической системы, между внешним и внутренним корпусами выполнен кольцевой зазор для прохождения бурового раствора, во внутреннем корпусе размещена плата управления, связывающая передающий модуль и измерительный модуль, модуль электропитания дополнительно содержит генератор, установленный в отдельном корпусе, имеющим верхнюю муфтовую часть, нижняя часть корпуса генератора соединена с внутренним корпусом и внешним корпусом системы, при этом в корпусе генератора выполнено отверстие для прохождения бурового раствора, генератор имеет проводное соединение с платой управления, передающий модуль включает кабельный канал передачи данных, для этого в стенке корпуса генератора предусмотрен паз для прокладки кабеля от платы управления до передающего модуля, а на верхней муфтовой части расположена индуктивная катушка, предназначенная для передачи данных от корпуса генератора до кабельного канала передачи данных, посредством возбуждения электромагнитной индукции.

Признаки заявляемого технического решения, отличительные от прототипа: все модули установлены в герметичном внутреннем корпусе, сцентрированном во внешнем корпусе телеметрической системы; между внешним и внутренним корпусами выполнен кольцевой зазор для прохождения бурового раствора; во внутреннем корпусе размещена плата управления, связывающая передающий модуль и измерительный модуль; модуль электропитания дополнительно содержит генератор, установленный в отдельном корпусе, имеющим верхнюю муфтовую часть, нижняя часть корпуса генератора соединена с внутренним корпусом и внешним корпусом системы; в корпусе генератора выполнено отверстие для прохождения бурового раствора; генератор имеет проводное соединение с платой управления; передающий модуль включает кабельный канал передачи данных, для этого в стенке корпуса генератора предусмотрен паз для прокладки кабеля от платы управления до передающего модуля, а на верхней муфтовой части расположена индуктивная катушка, предназначенная для передачи данных от корпуса генератора до кабельного канала передачи данных посредством возбуждения электромагнитной индукции.

Такая конструкция системы позволяет сцентрировать внутренний корпус во внешнем корпусе системы без центрирующих устройств, подверженных абразивному износу буровым раствором, и проложить провод от платы управления до кабельного канала связи. Благодаря этому достигается заявленный технический результат: повышение надежности устройства и увеличение скорости передачи информации от забоя к поверхности.

Заявителю неизвестно использование в науке и технике отличительных признаков телеметрической системы мониторинга ствола скважины с получением указанного технического результата.

Предлагаемая телеметрическая система мониторинга ствола скважины иллюстрируется чертежами, представленными на фиг. 1-4.

На фиг. 1 представлена общая схема работы системы.

На фиг. 2 представлен разрез телеметрической системы.

На фиг. 3 представлен кабельный канал передачи данных.

На фиг. 4 показано сечение А-А.

Телеметрическая система 1 (фиг. 1), используемая для бурения наклонно-направленных скважин 2, крепится к колонне 3 бурильных труб и располагается над системой управления буровым устройством или забойным двигателем 4. В нагнетательной линии 5 бурового насоса 6 установлен датчик давления промывочной жидкости 7. Наземное оборудование системы содержит приемное устройство 8, соединенное с датчиком давления промывочной жидкости 7.

Телеметрическая система 1 (фиг. 2) содержит измерительный модуль 9, включающий датчики, например инклинометрические, модуль электропитания и передающий модуль.

Все упомянутые модули для защиты установлены во внутреннем корпусе 10, сцентрированном во внешнем корпусе 11 системы. Внутренний корпус 10 выполнен герметичным. Между внешним корпусом 11 и внутренним корпусом 10 выполнен кольцевой зазор 12 для прохождения бурового раствора.

Во внутреннем корпусе 10 размещена плата управления 13, связывающая передающий модуль и измерительный модуль 9.

Модуль электропитания содержит аккумуляторы 14 и генератор 15, установленный в отдельном корпусе 16, имеющем верхнюю муфтовую часть 17. Нижняя часть корпуса 16 генератора соединена с внутренним корпусом 10, например, посредством кронштейна, и внешним корпусом 11 системы с помощью резьбового соединения 18. Корпус 16 генератора с внешним корпусом 11 системы предназначены для передачи крутящего момента от бурильной колонны 3 на долото 19 (фиг. 1).

Генератор 15 имеет проводное соединение 20 с платой управления 13.

Передающий модуль включает гидравлический канал связи и кабельный канал связи (фиг. 3). Гидравлический канал связи осуществляется формированием импульсов давления промывочной жидкости для передачи информации. Кабельный канал связи дублирует передачу данных.

В стенке корпуса 16 генератора предусмотрен паз 21 и отверстие 22 для прокладки кабеля 23 от платы управления 13 до передающего модуля.

На верхней муфтовой части 17 корпуса 16 генератора расположена индуктивная катушка 24, предназначенная для передачи данных от корпуса 16 генератора до кабельного канала передачи данных посредством возбуждения электромагнитной индукции.

В корпусе 16 генератора размещен пульсатор 25 и выполнено отверстие 26 для прохождения бурового раствора.

В нижней части внутреннего корпуса 10 расположена крышка 27, установленная посредством герметичного соединения.

В крышке 27 предусмотрено отверстие 28 для прохода бурового раствора из кольцевого зазора 12 в оборудование (например, забойный двигатель или система управления буровым устройством), присоединенное снизу телеметрической системы 1 с помощью резьбового соединения 29 на нижней муфтовой части 30 и винтовых соединений 31.

Также в крышке 27 предусмотрено отверстие 32 для проведения провода 33 от платы управления 13 на оборудование, расположенное снизу телеметрической системы 1 для оперативного изменения направления бурения без подъема оборудования на поверхность.

От платы управления 13 проложен провод 33 для питания и управления системы управления буровым устройством 4.

В случае остановки циркуляции бурового раствора и, соответственно, остановки генератора 15, питание электронных устройств телеметрической системы происходит от аккумуляторов 14, емкость которых (8 А⋅ч) обеспечит длительность работы систем без внешнего питания не менее 40 ч.

Верхняя муфтовая часть 17 телеметрической системы 1 соединена с бурильной колонной 3, которая представляет собой колонну стыкующихся бурильных труб с проложенным в ее стенке медным кабелем 34 (фиг. 3). В качестве базового элемента кабельного канала передачи данных использована бурильная труба 35, в наружной стенке которой методом фрезеровки выполнен паз 36 вида «ласточкин хвост» (фиг. 4). В паз 36 уложен изолированный двухпроводный медный кабель «витая пара» 34, который закреплен клеем 37. Оставшееся пространство паза 36 заполнено защитным полиуретановым составом - компаундом 38. На концах бурильной трубы 35 в муфтовой 39 и ниппельной 40 частях расположены индуктивные катушки 41, которые предназначены для передачи данных от одной трубы к другой посредством возбуждения электромагнитной индукции. Плата передачи данных 42 расположена в площадке (выемке) 43 в муфтовой части 39 трубы 35, в которой также размещены питающие батареи 44. Плата передачи данных 42 защищена герметично закрывающейся крышкой 45. При этом платы передачи данных в верхней муфтовой части 17 телеметрической системы 1 нет, так как она установлена на плате управления 13, а питание от генератора 15 или аккумуляторов 14 исключает необходимость устанавливать батареи 44. Замена батарей 44 возможна в условиях завода или трубной базы. От платы передачи данных 42 к индукционным кольцам в стенке трубы выполнены отверстия 46, которые после прокладки в них проводов 34 заливаются под давлением компаундом 38.

Устройство работает следующим образом.

Перед началом бурения на поверхности собирают измерительный модуль во внутреннем корпусе 10, который кронштейном крепится к корпусу генератора 16 герметичным соединением. На резьбовое соединение 18 корпуса генератора 16 навинчивают трубу, являющуюся внешним корпусом 11 телеметрической системы 1, а посредством резьбового соединения 29 винтовых соединений 31 прикрепляют забойный двигатель или систему управлению буровым устройством 4. К верхней муфтовой части 17 корпуса генератора 16 привинчивают бурильную трубу 35, и телеметрическая система 1 спускается на забой скважины 2 с постепенным наращиванием бурильных труб. Внутрь бурильной колонны 3 подают буровой раствор, который задействует генератор 15, обеспечивающий питание всей системы, и пульсатор 25, создающий гидравлический канал связи.

Гидравлический канал связи осуществляется следующим образом.

В процессе бурения скважины 2 осуществляется прокачка буровым насосом 6 промывочной жидкости внутри бурильной колонны 3. На пути промывочной жидкости находится пульсатор 25, расположенный в корпусе генератора 16, который при передаче информации в зависимости от сигналов, поступающих от платы управления 13, перекрывает периодически поток бурового раствора, создавая положительные импульсы гидравлического давления в бурильной колонне, регистрируемые датчиком давления 7, расположенным в нагнетательной линии 5 насоса 6.

Кабельный канал связи осуществляется следующим образом.

Отправляемые данные с платы управления 13 кодируются пакетами цифровых сообщений. Эти цифровые сообщения последовательно кодируются платой передачи данных (находящейся на плате управления 13), которая осуществляет преобразование информационного пакета в токовый сигнал с заданными характеристиками. Токовый сигнал передается в индукционную катушку 24 на телеметрической системе 1, при свинчивании которой с бурильной трубой 35 индукционные катушки 24 и 41 соотносятся друг напротив друга. При прохождении через индукционную катушку 24 возникает электромагнитное индукционное поле, которое передается на соседнюю катушку 41, которая включена в сеть со следующей платой передачи данных 42. Передача данных между двумя катушками осуществляется без электрического контакта по индукционному полю. Ключевым элементом платы передачи данных 42 является микросхема, которая обеспечивает двунаправленную связь по протоколу SPI между двумя изолированными устройствами через витую пару. Микросхема осуществляет кодировку и декодировку логических данных в последовательность импульсов длительностью 120 нс. Скорость передачи данных составляет 1 Мбит/с при длине кабеля до 10 м. При связке в сети каждая плата определяет свой порядковый номер и при обрыве сигнала можно определить, какой модуль вышел из строя.

Информация о забойных параметрах поступает одновременно по гидравлическому и проводному каналу связи в приемное устройство 8, где сигналы обрабатываются совместно.

Плата управления 13 передает питание от генератора 15 или аккумуляторов 14 на датчики измерительного модуля 9, которые измеряют параметры бурения, сигнал в закодированном виде поступает на плату управления 13.

Плата управления 13 является связующим элементом модуля передачи данных (гидравлического и проводного) и измерительного модуля 9. Основой платы 13 является управляющее микропроцессорное устройство - однокристальный микроконтроллер, реализующий с помощью управляющей программы, основные функции устройства:

- прием команд управления (для управления траекторией бурения скважины) посредством интерфейса SPI;

- прием телеметрической информации посредством интерфейса RS-485 и ее передачу по каналу связи;

- передачу данных в оборудование, расположенное ниже в колонне (например, в систему управления буровым устройством);

- ведение журнала работы;

- мониторинг работоспособности телеметрической системы;

- подзарядку аккумулятора.

Лабораторные и эксплуатационные испытания показали улучшенные эксплуатационные характеристики заявляемого технического решения.

Технические характеристики заявляемой телеметрической системы мониторинга ствола скважины

Применение изобретения позволит:

1. Повысить скорость передачи данных.

2. Увеличить надежность системы.

3. Обеспечить точность измерений.

4. Получить информацию с забоя скважины при серьезных отказах одного из каналов передачи данных.

5. Изменять направление бурения при помощи системы управления буровым устройством.

Телеметрическая система мониторинга ствола скважины, содержащая внешний корпус, измерительный модуль, включающий датчики, например инклинометрические, модуль электропитания, содержащий аккумуляторы, передающий модуль, формирующий импульсы давления промывочной жидкости для передачи информации по гидравлическому каналу связи, наземное оборудование, содержащее приемное устройство, соединенное с датчиком промывочной жидкости, установленным в нагнетательной линии бурового раствора, отличающаяся тем, что все модули установлены в герметичном внутреннем корпусе, сцентрированном во внешнем корпусе телеметрической системы, между внешним и внутренним корпусами выполнен кольцевой зазор для прохождения бурового раствора, во внутреннем корпусе размещена плата управления, связывающая передающий модуль и измерительный модуль, модуль электропитания дополнительно содержит генератор, установленный в отдельном корпусе, имеющем верхнюю муфтовую часть, нижняя часть корпуса генератора соединена с внутренним корпусом и внешним корпусом системы, при этом в корпусе генератора выполнено отверстие для прохождения бурового раствора, генератор имеет проводное соединение с платой управления, передающий модуль включает кабельный канал передачи данных, для этого в стенке корпуса генератора предусмотрен паз для прокладки кабеля от платы управления до передающего модуля, а на верхней муфтовой части расположена индуктивная катушка, предназначенная для передачи данных от корпуса генератора до кабельного канала передачи данных посредством возбуждения электромагнитной индукции.



 

Похожие патенты:

Изобретение относится к области техники связи. Технический результат изобретения заключается в универсальности применения интеллектуального носимого устройства без ограничения состояниями сетевого соединения.

Изобретение относится к технике радиосвязи и может быть использовано для передачи сигналов от стационарных приемопередатчиков и мобильных абонентов в шахтах, рудниках, туннелях и других линейно протяженных объектах.

Изобретение относится к области обеспечения авторизованного доступа к управлению агрегатами автомобиля. Рукоятка переключения передач (3) в автомобиле содержит датчики магнитного поля (6, 7).

Изобретение относится к области обеспечения доступа к сетям беспроводной связи. Техническим результатом является обеспечение возможности повторного использования параметров связи за счет записи параметров с проведением между ними различия, т.е.

Использование: в области электротехники. Технический результат - повышение производительности и улучшение обратной совместимости при беспроводной передаче мощности.

Изобретение относится к области бесконтактных средств коммуникации для аутентификации. Техническим результатом является увеличение радиуса действия коммуникации.

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат состоит в повышении надежности связи.

Группа изобретений относится к системе связи, двум модулям данных компонента, предназначенным для использования в системе управления технологической установкой и способу обмена данными компонента технологической установки.

Изобретение относится к области мобильных терминалов связи и использованию их конструктивных элементов в качестве антенны ближней радиосвязи. Техническим результатом является повышение способности обнаружения сигнала ближней радиосвязи и ее качества за счет использования наушников в качестве внешней антенны.

Изобретение относится к способу и устройству и мобильному терминалу для размещения заказа. Технический результат заключается в возможности автоматического преобразования формата заказа в формат, поддерживаемый поставщиком.

Изобретение относится к области радиотехники и может быть использовано для передачи сообщений с подводной лодки, находящейся в погруженном состоянии. Технический результат состоит в передаче сообщений с подводной лодки бесконтактным методом.

Изобретение относится к области радиотехники и может быть использовано для задач геокартирования в инженерной сейсморазведке. Предложена система сейсмической связи, содержащая сейсмические передатчики, расположенные в шахтной выработке, и сейсмический приемник, расположенный на поверхности Земли, включающий в себя N сейсмических датчиков, соответственно образующих антенную решетку, N усилителей и блок обработки сигналов.

Изобретения относятся к области электрорадиотехники, а именно к подводной технике электромагнитной связи. Технический результат состоит в повышении надежности и качества связи, а также помехозащищенности канала связи.

Изобретение относится к технике связи и может использоваться в системах связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами.

Изобретение относится к технике связи. Технический результат - обеспечение электромагнитной совместимости с радиоэлектронными средствами, линиями электропередачи, кабельными линиями связи, инженерными сооружениями и создание условий экологической безопасности в районе размещения антенной системы радиостанции.

Использование: для приема цифровых данных в многолучевом гидроакустическом канале связи с выраженным эффектом замираний сигнала, обусловленных интерференцией акустических лучей; сущность: антенна выполнена из отдельных приемных элементов в виде тонкостенных пьезокерамических колец с широкой частотной полосой и круговой диаграммой направленности в горизонтальной плоскости, разделенных по вертикали рупорами конической формы, которые формируют раздельные зоны приема по углам прихода лучей с несовпадающими по времени замираниями амплитуды сигнала; технический результат: повышение устойчивости канала связи к помехам многолучевости и реверберации.

Изобретение относится к системам связи с погруженными объектами на волнах сверхнизкочастотного (СНЧ) и крайненизкочастотного (КНЧ) диапазонов. Технический результат - обеспечение электромагнитной совместимости «Системы связи…» с РЭС, линиями электропередачи, кабельными линиями связи, инженерными сооружениями и создание условий экологической безопасности в районе размещения антенной системы радиостанции, разработка приемной антенной системы на корпусе подводного объекта.

Изобретение относится к технике сверхнизкочастотной (СНЧ) и крайненизкочастотной (КНЧ) связи с глубокопогруженными и удаленными подводными объектами. Предложенная система связи сверхнизкочастотного и крайненизкочастотного диапазонов с глубокопогруженными и удаленными объектами содержит передающую систему, состоящую из: задающего генератора; модулятора; системы управления, защиты и автоматизации; усилителя мощности; согласующего устройства; индикатора тока антенны и источника тока, причем прием и регистрация излучения, создаваемого СНЧ-КНЧ-генераторами, осуществляются с помощью буксируемой кабельной антенны, антенного усилителя и приемника СНЧ-КНЧ-диапазона, находящихся на борту подводного объекта, отличающаяся тем, что дополнительно введены: N преобразователей, N заземлителей антенной системы, выполненной в виде протяженной прямолинейной линии состоящей из N секций, отрезков, подземного неэкранированного кабеля, антенной системы длиной l, равной несколько десятков сотен километров.

Изобретение относится к системам передачи телеметрической информации для морских буровых установок. Техническим результатом изобретения является повышение надежности, чувствительности, а также снижение энергетического потенциала электромагнитного канала передачи телеметрической информации при меньшем количестве приборов, необходимых для передачи телеметрической информации с забоя шельфовой скважины на морскую платформу.

Изобретение относится к технике связи и может использоваться в беспроводных системах связи. Технический результат состоит в повышении пропускной способности каналов связи.

Изобретение относится к области роторного бурения скважин и может быть использовано при бурении наклонно направленных и горизонтальных скважин. Устройство обеспечения геостационарности навигационного оборудования телеметрической системы мониторинга траектории ствола скважины включает пустотелый цилиндрический герметичный корпус, содержащий основание, выполненное с возможностью вращения.

Изобретение относится к нефтегазодобывающей промышленности, в частности к устройствам для передачи информации между забоем и устьем, и может быть использовано для определения направления бурения скважин с горизонтальным участком, в том числе непосредственно в процессе бурения роторным способом. Телеметрическая система мониторинга ствола скважины содержит измерительный модуль, включающий датчики, например инклинометрические, модуль электропитания, передающий модуль, формирующий импульсы давления промывочной жидкости для передачи информации по гидравлическому каналу связи. Наземное оборудование содержит приемное устройство, соединенное с датчиком промывочной жидкости, установленным в нагнетательной линии бурового раствора. Все модули установлены в герметичном внутреннем корпусе, сцентрированном во внешнем корпусе телеметрической системы, между внешним и внутренним корпусами выполнен кольцевой зазор для прохождения бурового раствора. Во внутреннем корпусе размещена плата управления, связывающая передающий модуль и измерительный модуль. Модуль электропитания содержит аккумуляторы и генератор, установленный в отдельном корпусе, имеющем верхнюю муфтовую часть, нижняя часть корпуса генератора соединена с внутренним корпусом и внешним корпусом системы. В корпусе генератора выполнено отверстие для прохождения бурового раствора. Генератор имеет проводное соединение с платой управления. Передающий модуль дополнительно включает кабельный канал передачи данных, для этого в стенке корпуса генератора предусмотрен паз для прокладки кабеля от платы управления до передающего модуля, а на верхней муфтовой части расположена индуктивная катушка, предназначенная для передачи данных от корпуса генератора до кабельного канала передачи данных посредством возбуждения электромагнитной индукции. Технический результат - повышение скорости передачи данных, а также повышение надежности системы. 4 ил.

Наверх