Патенты автора Адигамов Руслан Рафкатович (RU)

Изобретение относится к производству мелющих шаров. Осуществляют выплавку стали, прокатку шаров и их термообработку. Осуществляют разливку стали в заготовки квадратного сечения. Указанные заготовки перекатывают в заготовки круглого сечения, диаметр которых соответствует условному диаметру конечных шаров в диапазоне 60–100 мм. Осуществляют нагрев заготовок круглого сечения до температуры 1010–1160°С. Производят поперечно-винтовую прокатку с температурой конца прокатки 950–1100°С. Выполняют подстуживание шаров до температуры 780–890°С. Осуществляют закалку шаров до температуры 160–250°С. Далее шары подвергают отпуску при температуре 220–300°С в течение 45–80 мин. В результате повышается ударостойкость шаров. 2 н. и 4 з.п. ф-лы, 3 табл.
Изобретение относится к способу производства мелющих шаров. Осуществляют разливку стали в заготовки квадратного сечения, затем указанные заготовки перекатывают в заготовки круглого сечения, диаметр которых соответствует условному диаметру конечных шаров в диапазоне 30–40 мм. Осуществляют нагрев заготовок круглого сечения до температуры 1010–1160°С. Производят поперечно-винтовую прокатку с температурой конца прокатки 950–1100°С. Выполняют подстуживание шаров до температуры 770–890°С. Затем осуществляют их закалку до температуры 100–150°С, а далее шары подвергают самоотпуску в течение не менее 12 часов. В результате повышается абразивная стойкость шаров. 3 з.п. ф-лы, 2 табл., 1 пр.
Изобретение относится к металлургии, конкретнее к производству с использованием электрошлаковой технологии биметаллических слитков, предназначенных для последующей прокатки на биметаллические полосы и листы. Осуществляют размещение металлической заготовки с зазором от стенки кристаллизатора, установку в этом зазоре расходуемого электрода из коррозионно-стойкой стали, наведение шлаковой ванны и переплав в ней расходуемого электрода с формированием наплавленного слоя. В процессе переплава производят регулировку значений тока в интервале 9-13 кА и напряжения в интервале 37-45 В, при этом значения подводимой мощности находятся в интервале 420-500 кВт, а в процессе переплава электрода из коррозионностойкой стали, содержащей 0,1-0,5% титана, производят равномерное добавление в металлическую ванну алюминия с расходом 1-4 г на 1 кг наплавляемого металла и титана с расходом 1-3 г на 1 кг наплавляемого металла, а переплав проводят под шлаком, содержание SiO2 в котором составляет не более 1%. Изобретение обеспечивает минимизацию угара титана и повышение коррозионной стойкости наплавленного слоя биметаллических слитков и листов при сохранении высокой прочности и сплошности соединения слоев и технологичности. 1 пр., 3 табл.
Изобретение относится к производству напольной износоустойчивой плитки, футеровки оборудования, эксплуатируемых с высокими абразивными нагрузками, и может быть использовано в строительной, металлургической, горнодобывающей и химической промышленности. Технический результат изобретения - снижение энергозатрат и «углеродного следа» получаемой продукции. Сырьевая смесь для изготовления изделий методом синтетического каменного литья включает огненно-жидкий доменный шлак и природный песок и содержит компоненты при следующем соотношении, мас.%: доменный шлак – 60-90,0; природный песок – 10-40; при этом суммарное содержание SiO2 и Al2O3 в смеси составляет, мас.%: 35-65 и 5-15 соответственно. Сырьевая смесь может содержать модификатор скорости кристаллизации в количестве 0,5-5 мас.%. Способ включает заливку в печь огненно-жидкого доменного шлака с температурой 1200-1400°С, ввод песка с содержанием SiO2 не менее 85 мас.%, нагрев полученной смеси до температуры 1410-1500°С, выдержку полученного расплава при указанной температуре в течение 20–90 минут и последующую разливку расплава в формы. Разливку расплава осуществляют в формы, предварительно подогретые до температуры 300–550°С. Формы с расплавом охлаждают до температуры менее 300°С со скоростью не более 0,5 градусов в минуту. 3 з.п. ф-лы, 1 табл., 2 пр.
Изобретение относится к металлургии, конкретнее к производству с использованием электрошлаковой технологии биметаллических слитков, предназначенных для последующей прокатки на биметаллические полосы и листы. Осуществляют размещение металлической заготовки с зазором от стенки кристаллизатора, установку в этом зазоре расходуемого электрода из коррозионностойкой стали, наведение шлаковой ванны и переплав в ней расходуемого электрода с формированием наплавленного слоя, на заготовке основного слоя толщиной 150-300 мм при ширине 1000-1600 мм формируют наплавленный слой, толщина которого составляет 5-30% от общей толщины слитка, согласно изобретению в процессе переплава производят регулировку значений тока в интервале 9-13 кА и напряжения в интервале 37-45 В, при этом значения подводимой мощности находятся в интервале 420-500 кВт, а переплав электрода из коррозионностойкой стали, содержащей 0,3-0,6% титана, проводят под шлаком, содержащим 1-5% TiO2. Изобретение обеспечивает минимизацию угара титана и повышение коррозионной стойкости наплавленного слоя биметаллических слитков и листов при сохранении высокой прочности и сплошности соединения слоев и технологичности. 1 пр., 2 табл.

Изобретение относится к области металлургии, а именно к производству из стальных непрерывнолитых высокопрочных свариваемых арматурных стержней диаметром от 12 до 36 мм, используемых в качестве рабочей арматуры железобетонных конструкций, а также конструкций, работающих при низких температурах до минус 170°С. Стержень получен из стали, содержащей компоненты при следующем соотношении, мас.%: углерод не более 0,10, марганец 0,60-1,80, кремний 0,05-0,60, никель 0,50-1,30, медь не более 0,40, хром не более 0,40, ванадий не более 0,03, ниобий не более 0,03, молибден не более 0,07, при необходимости титан не более 0,03, мышьяк не более 0,01 и азот не более 0,01, остальное – железо и неизбежные примеси. Стержень имеет значение углеродного эквивалента, рассчитываемое по выражению Сэкв=С+Mn/6+(Cr+V+Mo)/5+(Cu+Ni)/15, составляющее не более 0,52, микроструктуру, состоящую из мартенсита отпуска, нижнего и верхнего бейнита. Арматурный стержень обладает повышенными эксплуатационными и механическими свойствами, а именно отношение σв/σт составляет не менее 1,15, значение δр≥14%, при этом при температуре минус 168°С арматурный стержень имеет предел текучести σт не менее 575 МПа, относительное равномерное удлинение δmax не менее 3%, коэффициент чувствительности к надрезу KNSR не менее 1, где δр – относительное равномерное удлинение, %, σв – временное сопротивление разрыву, МПа, σт – предел текучести, МПа. 2 н. и 2 з.п. ф-лы, 3 табл.
Изобретение относится к специальной электрометаллургии, конкретнее к электрошлаковой технологии биметаллических слитков, предназначенных для последующей прокатки на биметаллические полосы и листы. В процессе переплава расходуемого электрода производят равномерное добавление в металлическую ванну алюминия и титана с расходом не менее 6 и 3 г на 1 кг наплавляемого металла соответственно, а переплав проводят при значении электросопротивления шлаковой ванны в интервале 3,3-3,9 мОм. Изобретение позволяет повысить коррозионную стойкость наплавленного слоя биметаллических слитков и листов, а также снизить их себестоимость при сохранении высокой прочности и сплошности соединения слоев и технологичности. 1 пр., 2 табл.
Изобретение относится к специальной электрометаллургии, конкретнее к производству, с использованием электрошлаковой технологии, биметаллических слитков, состоящих из основного слоя из углеродистой, низколегированной или легированной стали и наплавленного слоя из коррозионностойкой стали, предназначенных для последующей прокатки на биметаллические полосы и листы. Техническим результатом данного изобретения является повышение коррозионной стойкости наплавленного слоя биметаллических слитков и листов, а также снижение их себестоимости при сохранении высокой прочности и технологичности. Технический результат достигается тем, что в способе получения биметаллического слитка, включающем размещение металлической заготовки, являющейся основным слоем биметаллического слитка, с зазором от стенки кристаллизатора, установку в данном зазоре расходуемого электрода из коррозионностойкой стали, наведение шлаковой ванны и переплав в ней расходуемого электрода с формированием наплавленного слоя толщиной 5-30% от общей толщины слитка на заготовке основного слоя толщиной 150-300 мм, шириной 1000-1600 мм, согласно изобретению в процессе переплава расходуемого электрода из стали, легированной 0,5-1% титана, производят равномерное добавление в металлическую ванну алюминия и титана с расходом не менее 3 г и 2 г на 1 кг наплавляемого металла соответственно, при этом переплав проводят под шлаком, содержание в котором SiO2 составляет не более 2%. 3 табл.
Изобретение относится к области металлургии, а именно к технологии производства холоднокатаной полосы, используемой для изготовления изделий с высокими требованиями к жаропрочности. Выплавляют сталь следующего химического состава, мас.%: углерод 0,05-0,12, кремний 0,12-0,42, марганец 0,70-1,50, сера не более 0,30, фосфор не более 0,30, хром 2,5-3,8, никель 0,7-1,5, медь не более 0,30, молибден 0,1-0,5, железо и неизбежные примеси остальное. Осуществляют разливку стали в сляб, который подвергают горячей прокатке с получением горячекатаной полосы, при этом заканчивают горячую прокатку при температуре 850-950°С. Сматывают полосу в рулон при температуре 560-610°С. Проводят травление, отжиг горячекатаной травленой полосы путем нагрева стопы рулонов в колпаковых печах с водородной защитной атмосферой до температуры 700-750°С со скоростью 30-55 °С/час и выдержкой при этой температуре 18-25 час и последующую холодную прокатку с получением холоднокатаной полосы, которую, при необходимости, подвергают дрессировке с обжатием 0,4-0,8%. Обеспечивается увеличение выхода годной полосы за счет повышения комплекса механических свойств. 1 з.п. ф-лы, 1 пр.

Изобретение относится к области нанесения защитных покрытий на полосовой прокат способом горячего погружения в расплав и может найти применение при производстве проката с цинк-алюминиевым покрытием. Цинк-алюминиевый сплав для нанесения защитных покрытий на стальную полосу горячим погружением, содержащий цинк и алюминий, дополнительно содержит технологическую добавку кремния в количестве не менее 2,5 мас. % от содержания алюминия и технологическую добавку титана в количестве 0,1-0,2 мас. %, а содержание алюминия в сплаве удовлетворяет следующему условию , где - удельный вес цинк-алюминиевого сплава, находящийся в интервале 4,55-5,36 г/см3. Изобретение также относится к стальной полосе с указанным выше покрытием. Техническим результатом изобретения является повышение антикоррозионных и пластических свойств покрытия за счет сокращения образования нижнего дросса в ванне нанесения. А также изобретение направлено на экономию не менее 25% материала покрытия без изменения его толщины. 2 н.п. ф-лы, 1 табл., 1 пр.
Изобретение относится к области металлургии, а именно к производству толстых листов из особо хладостойких конструкционных сталей, используемых для изготовления оборудования, предназначенного для хранения и транспортировки сжиженного природного газа. Способ производства горячекатаных листов из криогенной стали включает нагрев непрерывнолитых заготовок, их черновую прокатку, чистовую прокатку и охлаждение. Непрерывнолитые заготовки получают из стали, содержащей, мас. %: C 0,03-0,10, Si не более 0,45, Mn 0,20-0,80, Al 0,02-0,06, Cr не более 0,20, Ni 6,5-11,0, Cu не более 0,20, Nb не более 0,020, Ti не более 0,020, V не более 0,02, Mo не более 0,30, S не более 0,005, P не более 0,010, N не более 0,010, B не более 0,008, Sn не более 0,015, Sb не более 0,015, As до 0,005, Ca до 0,003 и/или РЗМ до 0,005, Fe и неизбежные примеси – остальное. Осуществляют нагрев непрерывнолитых заготовок до температуры 1100-1250°С, их черновую прокатку при температуре не ниже 950°С на толщину, составляющую не менее 2 толщин готового листа, с относительными обжатиями за проход не менее 10%, чистовую прокатку начинают при температуре проката 850-920°С и заканчивают при температуре 760-830°С, проводят последующее ускоренное охлаждение, после чего листы нагревают до температуры 520-620°С и охлаждают на воздухе до комнатной температуры. Во втором варианте осуществления способа после прокатки последующее охлаждение от температуры 760-830°С проводят на воздухе, далее листы нагревают до температуры 770-830°С и подвергают ускоренному охлаждению, после чего листы нагревают до температуры 520-620°С и охлаждают на воздухе до комнатной температуры. Обеспечивается получение высокопрочной криогенной стали, обладающей улучшенным комплексом механических свойств, характеризующихся высокими значениями ударной вязкости в диапазоне температур до минус 196°С, при сохранении высоких прочностных характеристик. 2 н. и 14 з.п. ф-лы, 1 табл., 3 пр.

Изобретение относится к металлургии, а именно к способу производства холоднокатаного горячеоцинкованного высокопрочного листового проката из стали с двухфазной феррито-мартенситной структурой, который может быть использован в автомобильной промышленности. Проводят горячую прокатку сляба, после которой осуществляют охлаждение водой и смотку полосы в рулон. Затем осуществляют травление и холодную прокатку, после которой проводят обработку полосы в агрегате непрерывного горячего цинкования путем нагрева до температуры отжига, выдержки, ускоренного охлаждения, нанесения цинкового покрытия и дрессировки. Упомянутый сляб получают из стали, имеющей следующий химический состав, мас. %: углерод 0,06-0,14, кремний не более 0,35, марганец 1,3-2,6, хром 0,20-0,60, молибден не более 0,30, алюминий 0,02-0,08, ниобий не более 0,08, фосфор не более 0,02, сера не более 0,02, железо и неизбежные примеси остальное. Полосу нагревают до температуры отжига 730-800°С, ускоренное охлаждение проводят со скоростью 20-35°С/с и заканчивают при температуре 450-500°С, а дрессировку осуществляют с удлинением 0,3-0,7%. Кроме того, горячую прокатку заканчивают при температуре 780-890°С, смотку полосы в рулон проводят при температуре не менее 560°С, а удельное натяжение полосы в агрегате непрерывного горячего цинкования на стадиях нагрева, выдержки, охлаждения и нанесения цинкового покрытия составляет не менее 0,4 кг/мм2. Обеспечивается стабильное повышение пластичности и снижение затрат на производство холоднокатаного горячеоцинкованного проката из двухфазной стали с феррито-мартенситной структурой, при сохранении комплекса механических свойств. 2 з.п. ф-лы, 2 табл., 1 пр.

Группа изобретений относится к области металлургии, в частности к получению высокопрочного толстолистового стального проката на реверсивном стане, и может быть использовано для изготовления указанной продукции из низколегированных сталей. Получают непрерывнолитую заготовку из стали, ее нагрев и выдержку при температуре аустенизации, черновую прокатку, подстуживание на воздухе полученного подката, последующую чистовую прокатку на заданную толщину листа и ускоренное охлаждение готового проката. Непрерывнолитую заготовку получают из стали, содержащей, мас.%, С≤0,065, Mn≤1,2, Si≤0,25, Al≤0,05, (Cu+Cr+Ni)≤0,6, Nb≤0,045, Мо≤0,35, Р≤0,01, S≤0,002, железо и неизбежные примеси - остальное. Черновую прокатку проводят с температурой конца деформации 880-980°С. Чистовую прокатку до конечной толщины листа проводят до температуры конца деформации 870-940°С. Ускоренное охлаждение проводят до температуры не выше 100°С или до температуры 250-420°С, при температуре начала ускоренного охлаждения не ниже 830°С, и со скоростью охлаждения в диапазоне 20-90°С/сек. Обеспечивается повышение хладостойкости и коррозионной стойкости листового проката при сохранении высокой прочности, пластичности и ударной вязкости и снижение себестоимости листового проката. 2 н. и 2 з.п. ф-лы, 1 табл., 2 пр.

Изобретение относится к металлургии и может быть использовано для изготовления толстых листов для металлоконструкций ответственного назначения, применяемых в судостроении, топливно-энергетическом комплексе, тяжелом машиностроении, в том числе для конструкций, работающих при высоких (до 250°C) температурах. Способ производства горячекатаных листов из низколегированной стали для изготовления ответственных металлоконструкций, включающий аустенизацию непрерывнолитых заготовок, черновую прокатку, чистовую прокатку и охлаждение листов. Заготовки получают из стали, содержащей, мас.%: C 0,07-0,12, Si 0,16-0,35, Mn 1,25-1,75, Al 0,02-0,05, Ti 0,010-0,035, Mo 0,15-0,30, S не более 0,006, P не более 0,012, N не более 0,009, Cr+Ni+Cu 0,35-0,7, V+Nb 0,05-0,16, Fe и неизбежные примеси. Коэффициент трещиностойкости при сварке Pcm составляет 0,23% или менее, при этом аустенизацию непрерывнолитых заготовок проводят в диапазоне температур 1180-1250°С, черновую прокатку начинают при температуре не ниже 950°С и осуществляют с относительным обжатием за проход не менее 10% до толщины, составляющей 2-3,5 толщины готового листа, чистовую прокатку начинают при температуре 750-800°С и заканчивают при температуре 750-820°С с получением листов толщиной от 16 до 70 мм, затем проводят охлаждение листов толщиной от 16 до 40 мм или ускоренное охлаждение листов толщиной от более 40 до 70 мм с последующей термической обработкой. Получают листы толщиной от 16 до 70 мм для изготовления металлоконструкций с гарантированной хладостойкостью при пониженных температурах до минус 60°C и высокими прочностными свойствами, сохраняющимися при повышенных температурах эксплуатации, вплоть до плюс 250°C. 4 з.п. ф-лы, 1 табл., 2 пр.

Изобретение относится к области прокатного производства и может быть использовано при выявлении возникновения начальной стадии критической вибрации в рабочей клети прокатного стана. Способ включает непрерывные измерения в процессе прокатки фактических значений величины тока двигателя главного привода прокатного стана, при этом рассчитывают медианное значение нормализованной выборки измеренных фактических значений тока двигателя или их производной, которое сравнивают с предварительно определенным заданным медианным значением нормализованной выборки тока двигателя или его производной в условиях отсутствия вибрации с определением величины рассогласования, а на основании распознавания непрерывного возрастания величины рассогласования фиксируют возникновение начальной стадии критической вибрации. Использование изобретения позволяет повысить надежность технологического процесса прокатки и снизить простои прокатного стана. 5 ил.

Изобретение относится к черной металлургии, а именно к способам производства сталей для изготовления из рулонного проката деталей для машиностроения, в т.ч. элементов автомобилей, тракторов, сельскохозяйственных машин. Способ включает выплавку стали в сталеплавильном агрегате, выпуск стали в сталь-ковш, внепечную обработку, разливку, горячую прокатку и смотку полос в рулоны, при этом выплавляют сталь, содержащую, мас. %: углерод 25-0,4, марганец 0-1,6, кремний 10-0,6, серу не более 0,03, фосфор не более 0,03, хром не более 0,2, никель не более 0,2, медь не более 0,2, алюминий 0,005-0,15, ниобий не более 0,1, титан 0,001-0,2, азот не более 0,015, бор 0,0005-0,02, железо и неизбежные примеси - остальное, при этом выпуск стали из сталеплавильного агрегата осуществляют при ее окисленности не более 1000 ppm и температуре не менее 1550°С в течение 3-7 мин, горячую прокатку начинают при температуре 930-1070°С, заканчивают при температуре 780-950°С, а смотку полос осуществляют при температуре 500-700°С. Изобретение позволяет снизить содержание неметаллических включений в стали и получить горячекатаный прокат с улучшенными потребительскими свойствами, в т.ч. механическими свойствами. 2 з.п. ф-лы. 2 табл.

Изобретение относится к области производства холоднокатаного проката для изготовления бочек. Прокат имеет плоскую поверхность с механическими и жировыми загрязнениями. Улучшение адгезии лакокрасочного покрытия без проведения промежуточных операций очистки, грунтования и зачистки наружной поверхности бочки после сушки внутреннего покрытия обеспечивается за счет того, что количество механических загрязнений на каждой поверхности составляет не более 40 мг/м2, при этом общее количество жировых загрязнений с двух сторон составляет 40-70 мг/м2, а плотность пиков каждой поверхности составляет 50-70 1/см. 1 табл.

Изобретение относится к области черной металлургии, в частности к производству холоднокатаных полос толщиной 0,35-0,70 мм для последующего нанесения полимерного покрытия. Для увеличения выхода годного проката с полимерным покрытием за счет снижения отсортировки по дефектам поверхности осуществляют непрерывную разливку стали, содержащей, мас.%: углерод 0,07-0,13, кремний не более 0,04, марганец 0,12-0,40, сера не более 0,02, фосфор не более 0,02, хром не более 0,07, никель не более 0,10, медь не более 0,10, алюминий 0,01-0,05, азот не более 0,008, суммарное содержание ниобия, молибдена, титана и ванадия не более 0,045, железо и неизбежные примеси - остальное, горячую прокатку сляба с температурой конца прокатки 820-870°С, смотку горячекатаных полос в рулон при температуре 560-620°С, травление, холодную прокатку, рекристаллизационный отжиг при температуре 590-690°С и дрессировку отожженной полосы с обжатиями 0,15-0,30%. 2 табл.

Изобретение относится к области черной металлургии, в частности к производству особонизкоуглеродистых сталей с внепечной обработкой и разливкой на установках непрерывной разливки стали. В способе используют жидкий чугун с массовой долей серы не более 0,005%, во время выпуска стали в сталь-ковш осуществляют присадку флюса в количестве 0,5-3,0 кг/т стали, содержащего 0,1-15,0% СаО, не менее 60,0% Аl2O3 и не более 15% МgО, вакуумное обезуглероживание стали производят при давлении в вакуум-камере менее 25 кПа в течение 10-25 мин, после окончания вакуумного обезуглероживания в сталь-ковш вводят алюминий и известь для получения в покровном шлаке отношения (СаО)/(Аl2О3) менее 1,0, осуществляют ввод легирующих материалов, при этом при легировании стали титансодержащими материалами их ввод осуществляют не ранее 2 мин после присадки последней порции упомянутых легирующих материалов, после этого сталь-ковш подают на разливку. Изобретение позволяет стабилизировать содержание углерода в стали менее 0,0045%, повысить чистоту стали от неметаллических включений и снизить количество поверхностных дефектов. 4 з.п. ф-лы, 2 табл.

Изобретение относится к области металлургии. Техническим результатом изобретения является получение прочностных характеристик стали, склонности к ВН-эффекту при отсутствии площадки текучести. Технический результат достигается тем, что в способе производства горячеоцинкованного проката для холодной штамповки, включающем выплавку стали, разливку слябов, их нагрев, горячую прокатку, охлаждение водой, смотку полос в рулоны, травление, холодную прокатку, рекристаллизационный отжиг с нанесением цинкового покрытия и дрессировку, выплавляют сталь, содержащую, мас %: углерод 0,002-0,006, кремний не более 0,04, марганец 0,20-0,75, сера не более 0,015, алюминий не более 0,070, фосфор 0,015-0,070, азот не более 0,005, титан 0,010-0,030, ниобий 0,010-0,030, железо и неизбежные примеси - остальное, при этом содержание свободного углерода в твердом растворе находится в диапазоне 0,0005%≤Сэф≤0,0040%, нагрев слябов ведут при температуре 1200-1270°С в течение 3,5-5,5 ч, прокатку металла при температуре 1100-1150°С ведут в течение не менее 50 сек, смотку полос ведут при температуре 580-760°С. Кроме того, рекристаллизационный отжиг осуществляют при температуре 790-850°С, а дрессировку горячеоцинкованного проката производят с обжатием 0,8-1,8%. 2 з.п. ф-лы, 3 табл.

Изобретение относится к области металлургии, а именно к сталям, обладающим высокой демпфирующей способностью, используемым при изготовлении холодно- и горячекатаных листов и полос, сортового проката, прутков и поковок. Сталь содержит, мас.%: углерод 0,001-0,08, кремний 0,01-0,5, марганец 0,01-0,6, алюминий 3,5-7,0, хром 0,001-0,3, никель 0,001-0,3, медь 0,001-0,3, ванадий 0,0001-0,3, ниобий 0,0001-0,3, молибден 0,001-0,5, сера не более 0,02, фосфор не более 0,02, азот не более 0,015, титан 0,001-0,3, кобальт 0,0001-0,010, железо и неизбежные примеси - остальное. Повышается демпфирующая способность стали и выполненных из нее изделий в области малых (от 0,85×10-4 до 1,15×10-4) и средних (от 1,8×10-4 до 2,2×10-4) амплитуд упругой деформации при сохранении технологических свойств. 2 н. и 10 з.п. ф-лы, 3 табл.

Изобретение относится к области производства горячеоцинкованного проката для изготовления кузовных деталей автомобиля методом холодной штамповки с последующим нанесением лакокрасочных покрытий. Способ включает холодную прокатку, химическую очистку поверхности полосы, предварительный нагрев, рекристаллизационный отжиг, горячее цинкование, влажную дрессировку. Повышение потребительских свойств готовых окрашенных деталей кузова автомобиля за счет изготовления горячеоцинкованного проката с оптимальными параметрами микрогеометрии его поверхности обеспечивается за счет того, что влажную дрессировку производят с удельным усилием 150-250 т/м в валках с шероховатостью 2,2-2,6 мкм и плотностью пиков 100-120 1/см, при этом используют эмульсию с концентрацией 0,5-1,5%. Получение заданной шероховатости и плотности пиков на валках осуществляют путем подготовки валков на установке электроразрядного текстурирования с применением бронзовых электродов, а после влажной дрессировки на оцинкованную полосу наносят консервационно-штамповочное масло в количестве 1,0-2,0 г/м2 на сторону. 2 з.п.ф-лы, 1 табл.

Изобретение относится к области металлургии, конкретно к технологии производства горячеоцинкованного проката с минимальным пределом текучести 350 МПа из низколегированной стали, предназначенного для изготовления металлоконструкций. Cпособ включает выплавку стали, разливку, горячую прокатку, охлаждение водой, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг, нанесение цинкового покрытия и правку. Выплавляют сталь, содержащую, в мас.%: углерод 0,16-0,20, кремний 0,15-0,30, марганец 0,30-0,50, алюминий 0,02-0,05, сера не более 0,02, фосфор не более 0,02, хром не более 0,30, никель не более 0,30, медь не более 0,30, ниобий 0,010-0,030, железо и неизбежные примеси - остальное. Горячую прокатку заканчивают при температуре 850-950°С. Смотку полос ведут при температуре 510-650°С. Правку полос на изгибо-растяжной машине производят с удлинением 0,4-0,6% для толщин до 1,5 мм и с удлинением от 0,2% до 0,4% для толщин от 1,5 мм. Правку полос на изгибо-растяжной машине могут проводить с натяжением 8,5-14 т, а перед правкой могут производить дрессировку горячеоцинкованного проката. Техническим результатом изобретения является получение требуемого уровня предела текучести для получения надежного материала для изготовления металлоконструкций. 2 з.п. ф-лы, 2 табл.

Изобретение относится к технологии производства горячеоцинкованного проката повышенной прочности из низколегированной стали, предназначенного для изготовления деталей автомобиля методом штамповки. Способ включает выплавку стали, разливку, горячую прокатку, охлаждение водой, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг с нанесением цинкового покрытия, дрессировку и правку. Получение высокого уровня предела текучести в сочетании с высоким относительным удлинением, улучшение последующей штампуемости полос и, как следствие, повышение выхода годного при штамповке деталей сложной формы с высокими значениями локального удлинения металла, обеспечивается за счет того, что горячую прокатку проводят с температурой металла перед первой клетью чистовой группы не более 1010°С, охлаждение водой ведут со скоростью не менее 20°С/с, а правку полос на изгибо-растяжной машине производят с удлинением 0,4-0,6% для толщин до 1,5 мм и с удлинением от 0,2% до 0,4% для толщин от 1,5 мм. Состав выплавляемой стали регламентирован. 1 з.п. ф-лы, 2 табл.

Изобретение относится к области физико-химического анализа и может быть использовано для определения наличия трещин на поверхности образцов стального проката с полимерным покрытием, преимущественно при испытании полимерного покрытия на прочность при изгибе по ГОСТ Р 52146-2003. В способе определения сплошности полимерного покрытия, включающем контакт исследуемого образца с электропроводной жидкостью и измерение электрического тока, согласно изобретению ток образуется не от внешнего источника питания, а в результате появления на дефектных участках покрытия активного электрода - металлической полосы. Кроме того, в качестве электропроводной жидкости может применяться соляной раствор. Для реализации данного способа используют устройство для определения сплошности полимерного покрытия, включающее рабочий элемент с электропроводной жидкостью и прибор контроля тока, отличающееся тем, что рабочий элемент выполнен в виде электролитической ячейки, изготовленной из диэлектрического материала, в нижней части которой располагается электрод, выполненный из материала, не пассивирующегося в применяемой электропроводной жидкости, а верхняя часть которой имеет контактный элемент, выполненный из пластичного коррозионно-стойкого материала, при этом электролитическая ячейка снабжена системой ее заполнения и поддержания уровня выпуклого мениска в контактном элементе и контактирует с электропроводным элементом. Кроме того, электропроводный элемент может быть выполнен в форме металлического стакана, электрод - из графита, а контактный элемент - из резины. Техническим результатом является создание способа и устройства, которые обеспечивают точность, объективность, простоту и оперативность определения сплошности полимерного покрытия. 2 н. и 4 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к области металлургии, в частности к производству оцинкованного полосы под полимерное покрытие, преимущественно лакокрасочное с массой цинкового покрытия не более 300 г/м2. Для увеличения прочности проката с полимерным покрытием при испытании на изгиб с 3 Т до 11/2 Т по ГОСТ Р 52146-2003 способ включает горячую прокатку стальной полосы из малоуглеродистой стали, содержащей, мас.%: углерод 0,02-0,05, кремний не более 0,04, марганец 0,12-0,25, сера не более 0,018, фосфор не более 0,020, хром не более 0,05, никель не более 0,06, медь не более 0,08, алюминий 0,025-0,070, азот не более 0,007, железо и неизбежные примеси - остальное, смотку полосы в рулон, травление, холодную прокатку, обезжиривание, непрерывный отжиг, нанесение цинкового покрытия массой не более 300 г/м2, охлаждение, дрессировку и смотку в рулон, при этом температуру конца горячей прокатки и смотки устанавливают 830-900°С и 670-720°С соответственно, непрерывный отжиг холоднокатаной полосы ведут при температуре 680-820°С, дрессировку ведут с обжатием 0,4-1,2% и правку оцинкованной полосы. 1 з.п. ф-лы, 2 табл.
Изобретение относится к области металлургии, в частности к производству холоднокатаной полосы с высокими вытяжными свойствами для холодной штамповки, применяемой в автомобилестроении. Для повышения штампуемости полосы выплавляют сталь, содержащую, мас.%: углерод 0,02-0,06, кремний 0,005-0,030, марганец 0,08-0,20, фосфор 0,005-0,018, серу 0,005-0,025, алюминий кислоторастворимый 0,02-0,05, азот 0,002-0,006, хром не более 0,05, никель не более 0,06, медь не более 0,07, ванадий не более 0,006, железо и неизбежные примеси - остальное, осуществляют разливку стали, прокатку на непрерывном широкополосном стане, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг в колпаковой печи при температуре не ниже 690°C с регламентированным нагревом и дрессировку. Регламентированный нагрев под отжиг проводят сначала со скоростью не менее 30°С/час до температуры T1, определяемой из соотношения: T1>350+970[Cr+Ni+Cu]°C, затем от температуры T1 нагрев ведут со скоростью не более 25°C/час по крайней мере в течение 3 часов, а далее - со скоростью не более 40°C/час до температуры отжига не более 720°C, при этом время нахождения металла при температурах не менее 690°C определяется из соотношения: τ690≥4+950[V]. 2 табл., 5 пр.

 


Наверх