Способ производства горячеоцинкованного проката повышенной прочности



Способ производства горячеоцинкованного проката повышенной прочности
Способ производства горячеоцинкованного проката повышенной прочности

 


Владельцы патента RU 2570144:

Публичное акционерное общество "Северсталь" (ПАО "Северсталь") (RU)

Изобретение относится к области металлургии, конкретно к технологии производства горячеоцинкованного проката с минимальным пределом текучести 350 МПа из низколегированной стали, предназначенного для изготовления металлоконструкций. Cпособ включает выплавку стали, разливку, горячую прокатку, охлаждение водой, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг, нанесение цинкового покрытия и правку. Выплавляют сталь, содержащую, в мас.%: углерод 0,16-0,20, кремний 0,15-0,30, марганец 0,30-0,50, алюминий 0,02-0,05, сера не более 0,02, фосфор не более 0,02, хром не более 0,30, никель не более 0,30, медь не более 0,30, ниобий 0,010-0,030, железо и неизбежные примеси - остальное. Горячую прокатку заканчивают при температуре 850-950°С. Смотку полос ведут при температуре 510-650°С. Правку полос на изгибо-растяжной машине производят с удлинением 0,4-0,6% для толщин до 1,5 мм и с удлинением от 0,2% до 0,4% для толщин от 1,5 мм. Правку полос на изгибо-растяжной машине могут проводить с натяжением 8,5-14 т, а перед правкой могут производить дрессировку горячеоцинкованного проката. Техническим результатом изобретения является получение требуемого уровня предела текучести для получения надежного материала для изготовления металлоконструкций. 2 з.п. ф-лы, 2 табл.

 

Изобретение относится к области металлургии, конкретно к технологии производства горячеоцинкованного проката с минимальным пределом текучести 350 МПа из низколегированной стали, предназначенного для изготовления металлоконструкций.

Одним из определяющих качеств конструкционного материала является его способность выдерживать нагрузки без пластической деформации, что характеризуется пределом текучести. Из проката с более высоким пределом текучести можно получить более надежные и долговечные конструкции.

Известен способ производства холоднокатаной стали для глубокой вытяжки, включающий выплавку стали, содержащей компоненты в следующем соотношении, мас. %:

Углерод 0,002-0,008
Кремний 0,005-0,025
Марганец 0,050-0,20
Фосфор 0,005-0,025
Сера 0,003-0,012
Алюминий 0,02-0,07
Азот 0,002-0,007
Титан 0,02-0,05
Ниобий 0,001-0,080
Железо и неизбежные примеси остальное

разливку, горячую прокатку, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг с нанесением цинкового покрытия и дрессировку, согласно которому горячую прокатку заканчивают при температуре, определяемой из соотношения Tкп≥7300/(3,0-lg[Nb][C])-253, где Ткп - температура конца прокатки, °C; [Nb] и [С] - содержание ниобия и углерода в стали, %; а рекристаллизационный отжиг осуществляют в проходной печи при температуре, назначаемой в зависимости от содержания ниобия в стали в соответствии с уравнением Тотж=(750+1850[Nb]±20, где Тотж - температура термической обработки, °C, [Nb] - содержание ниобия в стали, мас. % (Патент РФ №2255989, МПК C21D 8/04, С22С 38/14, опубл. 10.07.2005 г.).

Недостаток известного способа состоит в том, что он не обеспечивает требуемого уровня механических свойств проката класса прочности 350.

Наиболее близким по технической сущности к предлагаемому изобретению является способ производства горячеоцинкованной полосы, включающий выплавку стали, разливку, горячую прокатку, охлаждение водой, смотку полос в рулоны, травление, холодную прокатку, рекристаллизационный отжиг, нанесение цинкового покрытия и дрессировку, согласно которому выплавляют сталь, содержащую углерод 0,001-0,006%, кремний не более 0,15%, марганец 0,25-1,60%, фосфор не более 0,12%, хром не более 0,15%, никель не более 0,15%, медь не более 0,15%, титан 0,01-0,07%, ниобий 0,01-0,07%, ванадий не более 0,010%, молибден не более 0,015%, алюминий 0,01-0,09%, азот не более 0,007%, сера не более 0,018%, железо и неизбежные примеси - остальное при выполнении соотношений Ti≥3,43N, Nb≥7,75C, где Ti, Ν, С, Nb - содержание титана, азота, ниобия, углерода, (Cr+Ni+Cu)≤0,25, где Cr, Ni, Cu - содержание хрома, никеля и меди, при этом горячую прокатку заканчивают при температуре 830-910°С, смотку полос ведут при температуре 530-730°С, рекристаллизационный отжиг осуществляют при температуре 750-900°С, а дрессировку полос производят с обжатием 0,5-2,5%. Сталь дополнительно может содержать 0,0005-0,005% бора и/или 0,0003-0,001% кальция (Патент РФ №2445380, МПК C21D 8/04, C21D 9/48, С22С 38/42, С23С 2/06, опубл. 13.08.2010 г.).

Недостаток известного способа состоит в том, что он не обеспечивает требуемого уровня механических свойств проката класса прочности 350.

Техническим результатом изобретения является получение требуемого уровня предела текучести и, как следствие, создание надежного материала для изготовления металлоконструкций.

Технический результат достигается тем, что в способе производства горячеоцинкованного проката повышенной прочности, включающем выплавку стали, разливку, горячую прокатку, охлаждение водой, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг, нанесение цинкового покрытия и правку, согласно изобретению выплавляют сталь, содержащую компоненты в следующем соотношении, мас. %:

Углерод 0,16-0,20
Кремний 0,15-0,30
Марганец 0,30-0,50
Алюминий 0,02-0,05
Сера не более 0,02
Фосфор не более 0,02
Хром не более 0,30
Никель не более 0,30
Медь не более 0,30
Ниобий 0,010-0,030
Железо и неизбежные примеси остальное

при этом горячую прокатку заканчивают при температуре 850-950°С, смотку полос ведут при температуре 510-650°С, а правку полос на изгибо-растяжной машине производят с удлинением 0,4-0,6% для толщин до 1,5 мм и с удлинением от 0,2% до 0,4% для толщин от 1,5 мм. Кроме того, правку полос на изгибо-растяжной машине проводят с натяжением 8,5-14 т. Дополнительно перед правкой может производиться дрессировка горячеоцинкованного проката.

Сущность изобретения заключается в том, что для обеспечения требуемого уровня предела текучести требуется создание оптимальной микроструктуры (размер зерна металлопроката) и оптимальной степени наклепа металлопроката при оцинковании, что достигается корректировкой химического состава стали и технологических параметров производства.

Горячая прокатка с температурами конца прокатки 850-950°С и смотки 510-650°С обеспечивает формирование оптимальной текстуры металла, которая после холодной прокатки и термообработки трансформируется в равноосную мелкозернистую текстуру. Более низкие температурные режимы труднореализуемы на стане горячей прокатки, а более высокие температурные режимы не позволяют получить необходимый предел текучести.

Углерод - один из упрочняющих элементов. При содержании углерода менее 0,16% прочностные свойства стали ниже допустимого уровня. Увеличение содержания углерода более 0,20% приводит к росту предела текучести.

Легирование стали кремнием сопровождается повышением прочности при сохранении относительного удлинения примерно на одном и том же уровне. При содержании кремния менее 0,15% его влияние на механические свойства незначительно, при содержании более 0,30% возникают трудности при оцинковании полосы.

При содержании марганца менее 0,30% прочность стали ниже допустимой. Увеличение содержания марганца более 0,50% чрезмерно упрочняет сталь, ухудшает ее пластичность.

Алюминий введен в сталь как раскислитель. При содержании алюминия менее 0,02% снижается пластичность стали, сталь становится склонной к старению. Увеличение содержания алюминия более 0,05% приводит к ухудшению комплекса механических свойств.

Сера является примесным элементом и упрочняет ферритную матрицу за счет образования сульфидов марганца. Увеличение содержания серы более 0,02% приводит к ухудшению обрабатываемости методом штамповки и профилирования.

Фосфор упрочняет сталь, повышает твердость феррита и усиливает выделение дисперсных карбидных включений. Увеличение содержания фосфора более 0,02% чрезмерно упрочняет сталь, ухудшает ее штампуемость.

Хром, никель, медь упрочняют ферритную матрицу. При содержании каждого из этих элементов более 0,30% снижается пластичность стали, ухудшается ее штампуемость.

Ниобий применен как легирующий элемент. Микролегирование ниобием позволяет эффективно измельчить зерно и повысить предел текучести. Минимальное содержание ниобия 0,010% определяется минимальным пределом текучести. Увеличение содержания ниобия более 0,030% нецелесообразно вследствие чрезмерного упрочнения стали и ее удорожания.

Влияние воздействия изгибо-растяжной машины на разные группы толщин металла различно, что обусловлено особенностями технологии переделов до оцинкования. Поэтому правку полос на изгибо-растяжной машине производят с удлинением 0,4-0,6% для толщин до 1,5 мм и с удлинением от 0,2% до 0,4% для толщин от 1,5 мм. Правка с удлинением менее 0,4% для толщин до 1,5 мм и менее 0,2% для толщин от 1,5 мм не обеспечивает необходимый уровень предела текучести. Правка с удлинением более 0,6% для толщин до 1,5 мм и более 0,4% для толщин от 1,5 мм не целесообразна из-за перегрузки изгибо-растяжной машины.

Кроме того, изгибо-растяжная машина деформирует зерно вдоль направления прокатки, эффективно упрочняя металлопрокат, при этом максимальные удлинения на изгибо-растяжной машине ограничены мощностью натяжных станций. Для обеспечения необходимой продольной деформации зерна правку полос производят с натяжением от 8,5-14 т в зависимости от толщины металла для обеспечения необходимых растягивающих напряжений в оцинкованном металлопрокате. Правка с натяжением менее 8,5 т не обеспечивает необходимый уровень растягивающих напряжений в оцинкованном прокате и тем самым не обеспечивает необходимый уровень предела текучести, правка с натяжением более 14 т ведет к перегрузкам приводов натяжных станций и выходу их из строя.

В некоторых случаях для придания определенной микрогеометрии поверхности дополнительно перед правкой производится дрессировка горячеоцинкованного проката.

Примеры реализации способа. В кислородном конвертере выплавили низколегированные стали, химический состав которых приведен в таблице 1. Выплавленную сталь разливали на машине непрерывного литья в слябы сечением 250×1280 мм. Слябы нагревали в нагревательной печи с шагающими балками до температуры 1250°С и прокатывали на непрерывном широкополосном стане 2000 в полосы толщиной 2,3-5,5 мм. Горячекатаные полосы на отводящем рольганге охлаждали водой и сматывали в рулоны. Охлажденные рулоны подвергали солянокислотному травлению в непрерывном травильном агрегате. Затем травленые полосы прокатывали на 5-клетевом стане до толщины 0,68-1,98 мм. Холоднокатаные полосы отжигали в проходной печи с нанесением цинкового покрытия и подвергали правке на изгибо-растяжной машине с заданным удлинением. В некоторых случаях горячеоцинкованный прокат перед правкой дрессировали. В таблице 2 приведены варианты реализации способа производства горячеоцинкованного проката, а также показатели механических свойств.

Из приведенных данных видно, что предлагаемый способ производства горячеоцинкованного проката позволяет получить требуемый уровень предела текучести.

Таким образом, опытная проверка показала приемлемость найденного технического решения для достижения поставленной цели.

1. Способ производства горячеоцинкованного проката повышенной прочности, включающий выплавку стали, разливку, горячую прокатку, охлаждение водой, смотку полос в рулоны, травление, холодную прокатку, рекристаллизационный отжиг с нанесением цинкового покрытия и правку, отличающийся тем, что выплавляют сталь, содержащую следующие компоненты, в мас. %:

углерод 0,16-0,20
кремний 0,15-0,30
марганец 0,30-0,50
алюминий 0,02-0,05
сера не более 0,02
фосфор не более 0,02
хром не более 0,30
никель не более 0,30
медь не более 0,30
ниобий 0,010-0,030
железо и неизбежные примеси остальное

при этом горячую прокатку проводят с температурой конца прокатки 850-950°C и температурой смотки полос 510-650°C, а правку полос на изгибо-растяжной машине производят с удлинением 0,4-0,6% для толщин до 1,5 мм и с удлинением от 0,2% до 0,4% для толщин от 1,5 мм.

2. Способ по п. 1, отличающийся тем, что перед правкой производят дрессировку горячеоцинкованного проката.

3. Способ по п. 1, отличающийся тем, что подвергают правке на изгибо-растяжной машине с натяжением 8,5-14 т.



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к созданию теплостойких сталей для изготовления подшипников, работающих при температуре до 500°C и используемых в авиационных газотурбинных двигателях (ГТД) и редукторах вертолетов.

Изобретение относится к области металлургии, а именно к жаропрочным хромоникелевым сталям, предназначенным для длительной эксплуатации при температурах до 1100°C. Сталь содержит углерод, кремний, марганец, хром, никель, ниобий, азот, фосфор, серу, железо и неизбежные примеси при следующем соотношении компонентов, мас.%: углерод 0,4-0,5, кремний 1,0-2,0, марганец 4,5-5,5, хром 24,0-26,0, никель 11,0-13,0, ниобий 1,2-1,5, азот 0,2-0,4, фосфор ≤0,02, сера ≤0,02, железо и неизбежные примеси - остальное.

Изобретение относится к области металлургии, а именно к присадочному материалу для сварки, который может быть использован при сварке роторов газовых турбин. Присадочный материал содержит, вес.%: C 0,05-0,15, Cr 8-11, Ni 2,8-6, Mo 0,5-1,9, Mn 0,5-1,5, Si 0,15-0,5, V 0,2-0,4, B 0-0,04, Re 1-3, Ta 0,001-0,07, N 0,01-0,06, Pd 0-60 ч./млн, P не более 0,25, S не более 0,02, железо и неизбежные примеси - остальное.
Изобретение относится к области металлургии, а именно к инструментальным сталям, используемым для изготовления кованых прокатных валков для горячей прокатки металла, например, профилей и труб.

Изобретение относится к области металлургии, а именно к двухслойному листовому прокату толщиной 10-50 мм, состоящему из слоя износостойкой стали и слоя свариваемой стали, для изготовления сварных конструкций, подвергающихся ударно-абразивному износу и работающих при температуре до -40°C.

Высокопрочный с высоким отношением предела текучести к пределу прочности стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности холоднокатаный стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности оцинкованный стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности оцинкованный погружением стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности отожженный оцинкованный погружением стальной лист, способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности холоднокатаного стального листа, способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности оцинкованного погружением стального листа и способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности отожженного оцинкованного погружением стального листа // 2531216
Изобретение относится к области металлургии, а именно к высокопрочному стальному листу, имеющему отношение предела текучести к пределу прочности 0,6 или более. Лист выполнен из стали следующего состава, в мас.%: 0,03-0,20% С, 1,0% или менее Si, от более 1,5 до 3,0% Mn, 0,10% или меньше Р, 0,05% или менее S, 0,10% или менее Аl, 0,010% или менее N, один или несколько видов элементов, выбранных из Ti, Nb и V, общее содержание которых составляет 0,010-1,000%, 0,001-0,01 Ta, остальное Fe и неизбежные примеси.

Изобретение относится к области металлургии, а именно к производству низкоуглеродистых и низколегированных сталей повышенной коррозионной стойкости для изготовления электросварных труб, используемых при строительстве трубопроводов, эксплуатируемых в условиях агрессивных сред, в частности для транспортировки обводненной нефти и высокоминерализированных пластовых вод, содержащих сероводород, ионы хлора, углекислоты, а также механические частицы.
Изобретение относится к области металлургии, а именно к высокопрочным низкоуглеродистым мартенситным свариваемым сталям, закаливающимся на воздухе, используемым для изготовления термически упрочненных сварных конструкций, крупногабаритных изделий, а также строительных конструкций и деталей нефтяного машиностроения.

Изобретение относится к металлургии, а именно к производству толстолистового проката из хладостойкой стали высокой прочности и улучшенной свариваемости для применения в судостроении, мостостроении и других отраслях промышленности.

Изобретение относится к металлургии, а именно к производству толстолистового проката из хладостойкой высокопрочной стали с улучшенной свариваемостью для применения в судостроении, топливно-энергетическом комплексе, транспортном и тяжелом машиностроении, мостостроении и других отраслях промышленности.

Изобретение относится к области металлургии, а именно к получению горячештампованной высокопрочной детали. Горячештампованная высокопрочная деталь имеет плакирующий слой из алюминиевого сплава на основе Al-Fe, содержащий фазу интерметаллического соединения Al-Fe на поверхности стального листа.

Изобретение относится к области металлургии. Для получения высокопрочного холоднокатаного стального листа, проявляющего превосходную пластичность, способность к деформационному упрочнению и способность к отбортовке внутренних кромок, осуществляют горячую прокатку сляба из стали, содержащей, мас.%: С более 0,020 и менее 0,30, Si более 0,10 и 3,00 или менее и Mn более 1,00 и 3,50 или менее, таким образом, что степень обжатия в валках за один конечный проход составляет более 15%, и заканчивают прокатку в диапазоне температур Ar3 или выше, после чего охлаждают горячекатаный прокат до температуры в диапазоне 780°С или ниже и сматывают в рулон в температурном диапазоне выше 400°С или ниже 400°С.

Изобретение относится к области металлургии, к технологии производства холоднокатаного проката повышенной прочности из низколегированной стали с высокими показателями пластичности и может быть использовано для изготовления деталей, применяемых в автомобилестроении.

Изобретение относится к области металлургии, конкретнее к технологии производства холоднокатаного проката повышенной прочности из низколегированной стали с высокими показателями пластичности, и может быть использовано для изготовления деталей, применяемых в автомобилестроении.

Изобретение относится к области металлургии. Для обеспечения высоких механических свойств, хорошей способности к пластической деформации и высокой стойкости к коррозии осуществляют выплавку листа из стали, содержащей, мас.%: 0,6≤С≤0,9, 17≤Mn≤22, 0,2≤Al≤0,9%, 0,2≤Si≤1,1, при условии 0,85≤Al+Si≤1,9, 1,2≤Cu≤1,9, S≤0,030, P≤0,080, N≤0,1, при необходимости: Nb≤0,25, предпочтительно 0,070-0,25, V≤0,5, предпочтительно 0,050-0,5, Ti≤0,5, предпочтительно 0,040-0,5, Ni≤2, следы≤Cr≤2, предпочтительно≤1, B≤0,010, предпочтительно 0,0005-0,010, железо и неизбежные примеси - остальное, её отливку в виде сляба, нагрев сляба до температуры 1100-1300°C, горячую прокатку сляба с температурой конца прокатки по меньшей мере 890°C, быстрое охлаждение горячекатаного листа со скоростью не менее 40°C/с с выдержкой между окончанием прокатки и началом охлаждения, проводимой таким образом, чтобы точка, заданная упомянутой выдержкой и температурой конца прокатки, располагалась внутри участка, определяемого диаграммой ABCD'E'F'A, предпочтительно ABCDEFA, на фиг.1, при этом во время выдержки лист естественно охлаждают на воздухе, смотку листа в рулон при температуре менее или равной 580°C.

Изобретение к производству горячекатаных стальных листов. Лист изготовлен из стали, содержащей, мас.%: 0,040≤С<0,065, 1,4≤Mn≤1,9, 0,1≤Si≤0,55, 0,095≤Ti≤0,145, 0,025≤Nb≤0,045, 0,005≤A1≤0,1, 0,002≤N≤0,007, S≤0,004, P<0,020, железо и неизбежные примеси - остальное.
Изобретение относится к области металлургии, в частности к производству cверхнизкоуглеродистых холоднокатаных сталей для глубокой вытяжки изделий и последующего однослойного эмалирования и может быть использовано при изготовлении деталей бытовой техники, посуды, санитарно-гигиенических приборов, в химической промышленности, в строительстве и др.

Изобретение относится к области металлургии и может быть использовано при производстве тонколистового горячекатаного проката для холодной штамповки. Способ включает горячую прокатку полос, их охлаждение до температуры смотки, смотку, травление и дрессировку.
Изобретение относится к области металлургии. Для улучшения свариваемости стальных полос с цинковым покрытием получают полосу из стали, содержащей, вес.%: С 0,04-1,0, Мn 9,0-30,0, Аl 0,05-15,0, Si 0,05-6,0, Cr ≤6,5, Cu ≤4, Ti+Zr ≤0,7, Nb+V ≤0,5, остальное - железо и неизбежные примеси, подвергают ее отжигу и затем на нее электролитическим методом наносят покрытие из цинка или цинкового сплава.

Высокопрочный холоднокатаный стальной лист с низкой плоскостной анизотропией предела ΔYPL, составляющей 0,03 или менее. Лист выполнен из стали, содержащей, мас.%: C: 0,06-0,12%, Si: 0,7% или менее, Mn: 1,2-2,6%, P: 0,020% или менее; S: 0,03% или менее; sol.Al: 0,01-0,5%; N: 0,005% или менее, по меньшей мере один из Cr: 0,5 или менее, и Mo: 0,5 или менее, остальное Fe и неизбежные примеси.

Изобретение относится к области металлургии. Для обеспечения стойкости листа к замедленному разрушению, повышения его предела прочности, адгезии гальванического покрытия, удлинения и раздаваемости отверстий стальной лист на своей поверхности имеет слой гальванического покрытия и выполнен из стали, содержащей, в мас.%: C 0,05-0,40, Si 0,5-3,0 и Mn 1,5-3,0, Р в пределах 0,04 или менее, S в пределах 0,01 или менее, N в пределах 0,01 или менее, Al в пределах 2,0 или менее, O в пределах 0,01 или менее, Fe и неизбежные примеси, микроструктура стального листа содержит феррит, бейнит, по объемной доле, 30% или больше отпущенного мартенсита и 8% или больше аустенита, при этом предел прочности стального листа составляет 980 МПа или больше, при этом слой гальванического покрытия имеет оксид, содержащий, по меньшей мере, один химический элемент, выбранный из Si, Mn и Al, а в сечении в направлении по толщине листа, включая стальной лист и слой гальванического покрытия доля площади проекции оксида составляет 10% или больше. 2 н. и 9 з.п. ф-лы, 13 табл., 5 ил.
Наверх