Патенты автора ФЕНЬЕ Фредерик (FR)

Настоящее изобретение относится к способу десульфуризации крекинг-лигроина, содержащего органические соединения серы, включающему: a) подачу крекинг-лигроина на ректификационную колонну, содержащую кубовый ребойлер; b) разделение упомянутого крекинг-лигроина на фракции, с образованием фракции легкого лигроина и фракции тяжелого лигроина, которую удаляют в виде кубового осадка из ректификационной колонны; c) подачу фракции тяжелого лигроина и водорода на блок гидродесульфуризации, содержащий катализатор гидродесульфуризации, с получением вытекающего потока десульфуризированного тяжелого лигроина; причем способ дополнительно включает: d) извлечение промежуточной фракции лигроина в виде бокового погона из ректификационной колонны у тарелки для бокового погона, расположенной ниже входа для подачи сырья и выше нижнего выхода для фракции тяжелого лигроина; e) нагрев упомянутой промежуточной фракции лигроина при более низкой температуре, чем температура кубового ребойлера, с помощью промежуточного ребойлера, снабженного источником тепла, имеющим температуру более низкую, чем у кубового ребойлера; f) рециркуляцию нагретой промежуточной фракции лигроина в ректификационную колонну на тарелку, расположенную ниже тарелки для бокового погона промежуточной фракции лигроина, колонны и выше самой нижней тарелки ректификационной колонны. 15 з.п. ф-лы, 2 пр., 1 табл., 2 ил.

Настоящее изобретение относится к способу конверсии тяжелого углеводородного сырья, включающему следующие этапы: a) этап гидроконверсии тяжелого углеводородного сырья в присутствии водорода в по меньшей мере одном или нескольких трехфазных реакторах, установленных последовательно или параллельно, содержащих по меньшей мере один катализатор гидроконверсии, причем этап a) гидроконверсии проводят при абсолютном давлении от 2 до 35 МПа, температуре от 300 до 550°C и при количестве водорода, смешиваемого с сырьем, от 50 до 5000 нормальных кубических метров (Нм3) на кубический метр (м3) сырья, чтобы получить жидкий поток со сниженным содержанием коксового остатка по Конрадсону, металлов, серы и азота, b) один или несколько факультативных этапов разделения потока, выходящего с этапа a), позволяющих получить по меньшей мере одну легкую жидкую фракцию, кипящую при температуре ниже 350°C, и по меньшей мере одну тяжелую жидкую фракцию, кипящую при температуре выше 350°C, c) этап гидроконверсии жидкого потока, выходящего с этапа гидроконверсии a), в случае, когда этап b) разделения не применяется, или этап гидроконверсии тяжелой жидкой фракции, выходящей с этапа разделения b), когда указанный этап b) применяется, в присутствии водорода в по меньшей мере одном или нескольких трехфазных реакторах, установленных последовательно или параллельно, содержащих по меньшей мере один катализатор гидроконверсии, причем этап c) гидроконверсии осуществляют при абсолютном давлении от 2 до 38 МПа, температуре от 300 до 550°C и при количестве водорода от 50 до 5000 нормальных кубических метров (Нм3) на кубический метр (м3) жидкого сырья в стандартных условиях по температуре и давлению, причем катализатор гидроконверсии на этапе a) и/или с) содержит алюмооксидную подложку, при этом катализатор на этапе a) и/или с) используют в виде экструдатов или шариков, а используемая в указанном способе полная объемная часовая скорость составляет от 0,05 до 0,09 ч-1. Предлагаемый способ позволяет повысить стабильность выходящих потоков при заданном уровне конверсии тяжелых фракций. 7 з.п. ф-лы, 2 ил., 9 табл., 2 пр.
Изобретение относится к способу конверсии тяжелой углеводородной фракции, имеющей температуру кипения по меньшей мере 300°С. Способ включает следующие стадии: а) по меньшей мере одну стадию селективной деасфальтизации тяжелого углеводородного сырья посредством жидкостной экстракции, обеспечивающей разделение по меньшей мере одной асфальтовой фракции, по меньшей мере одной фракции деасфальтизированного масла, причем, по меньшей мере одна из названных стадий деасфальтизации осуществляется с помощью смеси по меньшей мере одного полярного растворителя и по меньшей мере одного аполярного растворителя, причем объемное соотношение полярного растворителя в смеси полярного растворителя и аполярного растворителя составляет от 0,1 до 95%, при этом полярный растворитель выбирают из чистых ароматических или нафтеноароматических растворителей, причем полярные растворители содержат гетероэлементы или их смеси. При этом аполярный растворитель содержит растворитель, состоящий из насыщенного углеводорода, содержащего число атомов углерода, выше или равное 2, причем стадии деасфальтизации осуществляют в подкритических условиях используемой смеси растворителей. При этом температура составляет от 50 до 350°С, предпочтительно от 90 до 320°С, а давление составляет от 0,1 до 6 МПа, б) одну стадию гидроконверсии фракции деасфальтизированного масла в присутствии водорода по меньшей мере в одном трехфазном реакторе, причем названный реактор содержит по меньшей мере один катализатор гидроконверсии и работает в кипящем слое с восходящим потоком жидкости и газа и содержит по меньшей мере одно устройство для выпуска катализатора из названного реактора и по меньшей мере одно устройство для подачи свежего катализатора в названный реактор, в условиях, позволяющих получать отходящий поток, содержащий газовую фракцию, содержащую по большей части соединения H2 и H2S, и жидкую фракцию с пониженным содержанием углерода по Конрадсону, металлов, серы и азота, в) одну стадию разделения отходящего потока от стадии б) для получения газовой фракции, содержащей по большей части соединения H2 и H2S, и жидкой фракции с пониженным содержанием углерода по Конрадсону, металлов, серы и азота. Использование предлагаемого изобретения позволяет повысить гибкость и функциональность схемы конверсии сырья по изобретению. 20 з.п. ф-лы, 6 табл., 3 пр.

Предложен способ фракционирования углеводородного сырья с применением по меньшей мере одной зоны фракционирования, снабженной внутренними разделительными элементами, и по меньшей мере двух взаимозаменяемых донных зон, которые могут быть соединены с дном зоны фракционирования таким образом, что по меньшей мере первая из донных зон функционирует с указанной зоной фракционирования, поочередно, в течение времени, самое большее, равного времени забивания, так что, когда по меньшей мере первая из донных зон забивается или перед ее забиванием, она отсоединяется от зоны фракционирования, чтобы быть очищенной, в то время как процесс фракционирования сырья продолжается с по меньшей мере одной другой из донных зон. Технический результат - увеличение работоспособности способа фракционирования углеводородного сырья. 9 з.п. ф-лы, 6 ил., 2 табл., 4 пр.

Настоящее изобретение относится к области каталитического крекинга нефтяных фракций. Способ каталитического крекинга тяжелых углеводородных фракций типа VGO или остатка атмосферной дистилляции, с использованием установки каталитического крекинга с кипящим слоем, содержащую реакционную секцию, работающую в режиме восходящего или нисходящего потока, и секцию регенерации катализатора, которая осуществляет сжигание кокса, осажденного на катализатор в реакционной секции, с помощью воздуха для горения, предварительно сжатого путем использования компрессора MAB (main air blower), при этом в указанной секции регенерации генерируют дымовые газы регенератора, которые осуществляют теплообмен в котле-утилизаторе (weast heat boiler, или WHB) перед вводом в электростатический пылеуловитель (ESP), затем в экономайзер (ECO), причем в указанном способе применяется, кроме того, теплообменник, позволяющий создавать пар высокого давления (HP) благодаря теплу, вносимому регенерируемым катализатором, этот теплообменник называется "catcooler" (охладитель катализатора), причем способ отличается тем, что указанный воздух для горения предварительно нагревают ниже компрессора MAB до температуры 200-350°C, предпочтительно до 250-200°C, в теплообменнике APH с дымовыми газами с регенерации, расположенным ниже котла-утилизатора WHB и выше экономайзера (ECO), причем температура отбираемых в этом месте дымовых газов составляет от 300 до 650°C, причем избыток тепла, вносимый воздухом для горения, превращается в пар высокого давления (от 45 до 100 бар, предпочтительно от 50 до 70 бар) на уровне внешнего теплообменника (catcooler) на горячем катализаторе, отбираемом в регенераторе. Также раскрывается вариант способа каталитического крекинга тяжелых углеводородных фракций типа VGO или остатка атмосферной дистилляции, с использованием установки каталитического крекинга с кипящим слоем, причем в указанном способе не используется теплообменник типа "catcooler", и указанный способ отличается тем, что воздух для горения предварительно нагревают ниже компрессора MAB до температуры 200-350°C, предпочтительно до 250-300°C, в теплообменнике APH с дымовыми газами регенерации, расположенном ниже котла-утилизатора WHB и выше экономайзера (ECO), причем температура отбираемых в этом месте дымовых газов составляет от 300 до 650°C, и избыток тепла, вносимый воздухом для горения, позволяет снизить расход топлива в печи предварительного нагрева указанного воздуха для горения. Технический результат - улучшенная энергоэффективность установки. 2 н. и 4 з.п. ф-лы, 4 пр., 2 ил.

Настоящее изобретение относится к способу переработки тяжелого углеводородного сырья, в частности, полученного после атмосферной перегонки или вакуумной перегонки сырой нефти. Описан способ переработки тяжелого углеводородного сырья, имеющего начальную температуру кипения по меньшей мере 300°C, включающий следующие стадии: а) стадия гидроконверсии по меньшей мере части указанного сырья в присутствии водорода по меньшей мере в одном трехфазном реакторе, причем указанный реактор содержит по меньшей мере один катализатор гидроконверсии и работает в кипящем слое с восходящим потоком жидкости и газа и содержит по меньшей мере одно средство для извлечения указанного катализатора из указанного реактора и по меньшей мере одно средство для подачи свежего катализатора в указанный реактор в условиях, обеспечивающих получение жидкого сырья с низким содержанием углерода по Конрадсону, металлов, серы и азота, b) стадия разделения потока, выходящего со стадии а), для получения легкой жидкой фракции, кипящей при температуре ниже 300°C, и тяжелой жидкой фракции, кипящей при температуре выше 300°C, с) стадия селективной деасфальтизации по меньшей мере части тяжелой жидкой фракции, кипящей при температуре выше 300°C, выходящей со стадии b), путем экстракции жидкость/жидкость в одну стадию в среде экстрагирования, причем указанное зкстрагирование осуществляют при помощи смеси по меньшей мере одного полярного растворителя и по меньшей мере одного неполярного растворителя с получением асфальтовой фазы и фракции деасфальтированного масла DAO, причем соотношение указанного полярного растворителя и указанного неполярного растворителя смеси растворителей регулируют в соответствии со свойствами сырья и целевым выходом асфальта, при этом стадию деасфальтизации проводят в условиях, субкритических для указанной смеси растворителей, d) стадия рециркулирования по меньшей мере части указанной фракции деасфальтированного масла DAO, выходящей со стадии с), перед стадией а) гидроконверсии и/или на вход на стадию b) разделения, где полярный растворитель представляет собой чистый ароматический или нафтеноароматический растворитель. Технический результат - повышение степени конверсии валоризуемого сырья и сведение к минимуму образования таких отложений в оборудовании, находящемся ниже по потоку установок гидроконверсии. 10 з.п. ф-лы, 5 пр., 12 табл., 2 ил.

Изобретение относится к вариантам способа конверсии тяжелого углеводородного сырья, обладающего большой гибкостью в отношении получения пропилена, бензина и среднего дистиллята. Один из вариантов включает следующие стадии, когда способ осуществляют в режиме "макси-пропилен": a) стадию каталитического крекинга (FCC) тяжелой фракции, дающую фракцию бензина С5-220°С, когда FCC ориентирован на получение бензина, и С5-150°С, когда FCC ориентирован на получение среднего дистиллята; b) стадию селективного гидрирования (SHU) бензиновой фракции, поступающей с установки каталитического крекинга (FCC), осуществляемую в следующих условиях: давление от 0,5 до 5 МПа, температура от 80°С до 220°С, с часовым объемным расходом жидкости (LHSV) от 1 до 10 ч-1, причем часовой объемный расход жидкости выражен в литрах сырья на литр катализатора в час (л/л⋅ч); c) стадию разделения дистилляцией (SPLIT) бензина, выходящего со стадии b), позволяющую разделить две фракции: фракцию легкого бензина C5-Pf и фракцию тяжелого бензина Pf-220°С, причем температура Pf, являющаяся разграничительной между легким бензином и тяжелым бензином, составляет от 50°С до 150°С, предпочтительно от 50°С до 100°С, еще более предпочтительно от 50°С до 80°С; d) стадию очистки (PUR) легкого бензина C5-Pf, выходящего со стадии с), для удаления азота до содержания менее 1 ч./млн по массе, предпочтительно менее 0,2 ч./млн по массе; e) стадию олигомеризации (OLG) легкого бензина C5-Pf, выходящего со стадии очистки (PUR), причем рабочие условия на указанной стадии олигомеризации (OLG) следующие: температура от 60°С до 350°С, предпочтительно от 100°С до 300°С, еще более предпочтительно от 120°С до 250°С, давление от 1 до 10 МПа (1 МПа=106 паскалей), предпочтительно от 2 до 8 МПа, еще более предпочтительно от 3 до 6 МПа, катализаторы на основе алюмосиликата, или аморфного алюмосиликата, или полимера органической кислоты, или цеолитов, предпочтительно катализаторы на основе алюмосиликата, или аморфного алюмосиликата, или полимера органической кислоты, предпочтительно типа сульфосмол; f) стадию разделения олигомеров, полученных на выходе со стадии е), позволяющую выделить, по меньшей мере, 2 фракции: фракцию бензина С5-150°С, фракцию дистиллята 150°С+, причем способ, действующий в режиме "макси-пропилен", отличается тем, что бензиновую фракцию С5-150°С и фракцию дистиллята 150°С+, выходящие со стадии разделения олигомеров, возвращают в FCC. Другие варианты относятся к «макси-бензину» и «макси-дистилляту». Использование настоящего изобретения позволяет повысить продолжительность цикла катализатора олигомеризации. 3 н. и 4 з.п. ф-лы, 1 ил., 8 табл., 5 пр.

Изобретение относится к способу конверсии тяжелого углеводородного сырья. В способе применяется установка каталитического крекинга (FCC), за которой идет одна или несколько установок селективного гидрирования. В способе сырье для установки селективного гидрирования состоит из фракции тяжелого дистиллята, выходящей с FCC, называемой фракцией HCO, состоящей из триароматических соединений более чем на 60 вес.% и характеризующейся интервалом температур кипения от 320°C до 490°C, предпочтительно от 360°C до 440°C. Селективно обработанную фракцию HCO повторно вводят в реакционную зону установки FCC. Установка селективного гидрирования работает при давлении от 15 до 50 бар и при температуре в интервале от 325°C до 360°C в присутствии катализатора гидрообработки, содержащего от 1 до 10 вес.% никеля, предпочтительно от 1 до 5 вес.% никеля (выражено на оксид никеля NiO) в комбинации с 1-30 вес.% молибдена, предпочтительно 5-20 вес.% молибдена (выражено на оксид молибдена MoO3) на подложке из оксида алюминия. Технический результат: улучшение производительности и селективности по среднему дистилляту. 5 з.п. ф-лы, 1 ил., 3 пр., 8 табл.

Изобретение относится к интегрированному способу улавливания CO2, выбрасываемого отходящими газами, выходящими из зоны регенерации установки каталитического крекинга в псевдоожиженном слое (FCC), на которой обрабатывают углеводородную фракцию типа вакуумного дистиллята или остатка от атмосферной перегонки, в котором используют установку обработки аминами (AMN) отходящих газов для удаления CO2 и в котором пар HP получают при охлаждении отходящих газов, выходящих из зоны регенерации, и применяют по меньшей мере в одной турбине с противодавлением, которая приводит в движение не исключительным образом: a) либо воздуходувку подачи воздуха регенерации (MAB) установки FCC; b) либо компрессор крекинг-газов (WGC); причем образующийся пар BP используют для обеспечения регенерации амина на установке обработки аминами (AMN), а избыток пара HP и BP пересчитывают в снижение выбросов CO2. Способ позволяет улучшить баланс CO2. 10 з.п. ф-лы, 3 ил., 3 табл., 3 пр.

Изобретение относится к способу конверсии тяжелого сырья. Способ получения средних дистиллятов из тяжелого сырья (1) типа вакуумного газойля или остатков атмосферной перегонки последовательно осуществляют в 4 этапа, содержащих: a) этап предварительной обработки (PRET), который осуществляют на установке гидрокрекинга или гидрообработки, позволяющий уменьшить количество серосодержащих и азотсодержащих примесей в сырье, а также количество диолефинов, в ходе которого получают бензиновую фракцию C5-160°C (3), первую фракцию среднего дистиллята (4) с интервалом температуры кипения 160-360°C и часть (5), называемую неконвертированной, которая имеет, по существу, тот же интервал температур кипения, что и исходное тяжелое сырье, b) этап каталитического крекинга (FCC) указанной неконвертированной части (5), отбираемой с этапа предварительной обработки (PRET), в ходе которого получают фракцию (7) сухих газов, используемых в качестве топлива, фракцию C3 (8), фракцию C4 (9), фракцию бензина C5-160°C (10) и вторую фракцию средних дистиллятов (11), причем бензиновую фракцию (10) подают на установку очистки (PUR), c) этап олигомеризации (OLG), на который подают фракцию C3 (8), фракцию C4 (9), отбираемые с установки каталитического крекинга, и фракцию бензина (10') с установки очистки (PUR), и в ходе которого получают фракцию C3/C4 (14), фракцию бензина C5-160°C (15), которые добавляют к бензиновому пулу, и третью фракцию средних дистиллятов (16), которую подают на установку гидрообработки (HDT), d) этап полного гидрирования (HDT) фракции средних дистиллятов (16), отбираемой с этапа олигомеризации, для достижения соблюдения требований, предъявляемых к коммерчески распространяемому газойлю. Технический результат - повышение селективности по средним дистиллятам по сравнению с бензином и увеличение их выхода. 8 з.п. ф-лы, 10 табл., 1 ил., 2 пр.

Изобретение относится к области каталитического крекинга нефтяных фракций. Изобретение касается способа производства бензина в установке каталитического крекинга, содержащей, по меньшей мере главный реактор, работающий на сырье с низким содержанием углерода по Конрадсону и с высоким содержанием водорода, при этом упомянутый способ содержит рециркуляцию суспензионной фракции либо в боковой емкости, расположенной на отводе отпарной колонны, либо внутри отпарной колонны при помощи трубчатой камеры, находящейся внутри упомянутой отпарной колонны. Технический результат - рециркуляция суспензионной фракции, позволяющая избежать образования горячих точек. 3 н. и 5 з.п. ф-лы, 3 ил., 4 табл.

В изобретении описан комплексный способ улавливания CO2, выделяемого, по меньшей мере, частью дымовых газов, покидающих зону регенерации установки каталитического крекинга, предполагающей использование установки, работающей с использованием аминосодержащих продуктов, в котором установка каталитического крекинга оборудована внешним теплообменником, в котором в качестве горячего теплоносителя используется часть катализатора, отбираемого в зоне регенерации, а энергия, необходимая для работы установки, работающей с использованием аминосодержащих продуктов, поставляются полностью установкой каталитического крекинга за счет использования пара, вырабатываемого указанным выше внешним теплообменником. Изобретение позволяет обеспечить тепловой контакт между установкой каталитического крекинга и установкой по обработке дымовых газов аминосодержащими продуктами. 6 з.п. ф-лы, 2 ил., 5 табл.

Изобретение относится к области каталитического крекинга нефтяных фракций. Изобретение касается способа получения бензина и совместного получения пропилена, в котором используется установка каталитического крекинга, содержащая зону регенерации катализатора и реакционную зону с двумя системами подъема, работающими параллельно в режимах разной жесткости, причем катализатор циркулирует между зоной регенерации и реакционной зоной по двум параллельным контурам: одним контуром, называемым главным, содержащим первую внешнюю систему охлаждения катализатора, и вторым контуром, называемым вторичным, содержащим вторую внешнюю систему охлаждения катализатора. Технический результат - эффективное регулирование температуры катализатора на входе в каждую систему подъема и оптимизация получения бензина и одновременного получения пропилена. 8 з.п. ф-лы, 1 ил., 3 табл., 3 пр.

 


Наверх