Патенты автора Гущина Татьяна Владимировна (RU)

Изобретение относится к устройствам для измельчения материалов. Предложена центробежная ударная мельница, содержащая ступенчатый корпус, каждая последующая ступень в котором, считая по ходу перемещения материала, выполнена большего диаметра, горизонтально расположенный в корпусе ступенчатый ротор с билами, загрузочный и разгрузочный патрубки. На последней ступени корпуса установлена отражательная пластина под углом 35-45° слева и справа относительно осевой линии выгрузочного патрубка. Расстояние между отражательной пластиной и обечайкой корпуса равно высоте отбойных элементов. Устройство обеспечивает повышение эффективности процесса измельчения материала и устранение проскока крупных фракций в измельченный продукт. 2 ил.

Изобретение относится к химической промышленности и может быть использовано для изготовления электродных материалов химических источников тока. Устройство для получения частиц сферического графита содержит корпус 2 с загрузочным 1 и вызгрузочным 9 устройствами, а также ротор 4. Корпус 2 и ротор 4 выполнены трехступенчатыми. Ротор 4 снабжен сфероидизирующими дисками 5 со ступицами, на которых жестко закреплены била 6. Соотношение размеров дисков 5 сверху вниз 1:1,3:1,6, диаметр нижнего диска 350 мм. Средний и нижний сфероидизирующие диски 5 содержат шесть сепарационных отверстий 7 диаметром 30-40 мм, расположенных на расстоянии 1/3 диаметра от оси ротора 4. На внутренней поверхности ступенчатого корпуса 2 через каждые 50 мм закреплены отбойники 3 высотой 10-12 мм. Выгрузочное 9 устройство выполнено в нижней крышке корпуса 2 и установлено на расстоянии от края его нижней ступени, равном сумме высот отбойников 3 и била 6 нижней ступени ротора 4. Загрузочное 1 устройство установлено в центре верхней части корпуса 2 соосно с осью вращения вала ротора 4. Исходный природный графит загружают через загрузочное 1 устройство и подвергают ударно-отражательному измельчению с увеличением скоростей нагружения на каждой ступени на 30-35% от скорости на предыдущей ступени обработки, равной 30-100 м/с за один проход. После этого измельченный графит пропускают через указанное устройство 5-10 раз с меньшими скоростями нагружения, при этом на последней ступени скорость нагружения 40-50 м/с, для создания условий закатывания, гранулирования и точечного «пришивания» плоских чешуйчатых частиц разных размеров от 1,5 до 80 мкм в образующиеся гранулы графита размерами 5-50 мкм. При этом острые углы гранул подвергаются истиранию в зонах интенсивного турбулентного вращения, находящихся около отбойников 3. Изобретение позволяет интенсифицировать процесс измельчения, увеличить содержание частиц с высокой степенью сферичности до 55 % от общей массы обрабатываемых частиц графита, повысить выход готового продукта, снизить удельные затраты энергии. 2 н.п. ф-лы, 8 ил., 1 табл., 2 пр.
Изобретение относится к технологии получения неорганических волокнистых материалов и может быть использовано для изготовления термостойких звукоизоляционных композиционных материалов, сорбентов для очистки газообразных, жидких сред, в том числе отходов промышленных производств от органических и неорганических веществ; при производстве углепластиков; антифрикционных, смазочных материалов; при изготовлении композиционных материалов для электротехнической, атомной, машиностроительной, химической, строительной промышленности. Задачей изобретения является повышение прочности на изгиб и плотности волокнистого материала, а также повышение величины его удельной поверхности. Способ получения неорганического волокнистого материала, включающий обработку 20-40 % водным раствором хлоридов алюминия, железа, цинка, меди, смешение его с водной дисперсией , содержащей 20-30 % монтмориллонита и 10-12 % поливинилового спирта, диспергацию в течение 20-40 мин до получения полидисперсных частиц размером 0,08-600 мкм, приготовление водоволокнистой формовочной массы, формование и отжим волокнистого материала в формах из пеностекла в виде пластин с размером 100×100×5 мм, сушку и обжиг без доступа воздуха при температуре 1100-1500ºС в течение 30-40 мин и охлаждение. В качестве волокна используют натуральные, искусственные, химические волокна неорганического происхождения, например кремнеземные, стеклянные, поликристаллические на основе оксида алюминия. Сушку волокнистого материала осуществляют при температуре 120-280ºС в течение 20-30 мин, охлаждение до температуры 20-22ºС. 2 з.п. ф-лы, 2 табл., 3 пр.
Изобретение относится к технологии получения неорганических термостойких, антикоррозионных композиционных материалов при производстве пластиков, антифрикционных и смазочных материалов при изготовлении композиционных материалов для строительной, электротехнической, атомной, машиностроительной и химической промышленностей. В способе получения теплоизоляционного материала, включающем смешивание неорганического природного материала, жидкого стекла, доломита в виде порошка и добавки, формование смеси и термообработку, используют жидкое натриевое стекло плотностью 1,28 - 1,42 кг/м3, в качестве неорганического природного материала - модифицированный органическим веществом монтмориллонит, а в качестве добавки - гидратированное целлюлозное волокно в форме штапелек длиной 5,0-20,0 мм, пропитанное 30% водным раствором сульфатов железа, цинка, меди, алюминия, взятыми в соотношении 1,0:0,5:0,5:1,0 в промывочной ванне в течение 70-80 мин с последующим отжимом до влажности 60-65% и высушенное при температуре 120-140°С до удаления 95-98% оставшейся влаги, смешивание компонентов осуществляют путем механоактивации в течение 8-10 мин с последующим формованием смеси и обжигом при повышении температуры обжига от 140 до 1300°С в течение 30-40 мин, причем модифицирование монтмориллонита проводят продуктом взаимодействия капролактама или его олигомеров с бутилстеаратом, при этом компоненты смеси берут в следующем соотношении, мас.%: модифицированный монтмориллонит 20-60, указанное жидкое стекло 20-30, указанный доломит 10-35, указанное целлюлозное волокно 10-15. Изобретение развито в зависимых пунктах. Технический результат - повышение огнестойкости материала, снижение коэффициента теплопроводности, придание материалу антикоррозионных свойств, а именно устойчивости к воздействию растворов кислот. 2 з.п. ф-лы, 3 пр., 1 табл.

 


Наверх