Патенты автора Аветисов Игорь Христофорович (RU)

Изобретение относится к технологии неорганических материалов. Для очистки нитрата натрия методом кристаллизации из пересыщенного водного раствора готовят раствор из нитрата натрия ХЧ и бидистиллированной воды, соответствующий насыщенному при 90°С, выдерживают при температуре 95°С в течение 1 ч, фильтруют и охлаждают раствор с 90°С до 20°С с постоянной скоростью охлаждения, равной 0,4 град/мин. Затем проводят фильтрацию под вакуумом и промывку продукта от маточного раствора бидистиллированной водой или раствором бидистиллированной воды и изопропилового спирта ОСЧ. Изобретение позволяет получить высокочистый нитрат натрия с пониженным содержанием калия, повысить выход конечного продукта. 2 з.п. ф-лы, 2 ил., 3 табл., 3 пр.

Изобретение относится к технологии получения высокочистых неорганических материалов, а именно к получению высокочистого безводного молибдата лития с примесной чистотой не менее 99,995 мас.%. Способ включает использование метода твердофазного синтеза. Дополнительно к исходной шихте, состоящей из карбоната лития и оксида молибдена (VI), добавляют хлорид лития с примесной чистотой не менее 99,995 мас.% в количестве 10-30 мас.%. Контейнер с шихтой помещают в реактор из инертного материала, внутри которого в условиях динамического вакуума при давлении остаточных газов не выше 10-2 торр. Проводят отжиг при температуре 200°С в течение 2 ч, после чего в реакторе осуществляют синтез при температуре 650°С в условиях динамического вакуума менее 10-2 торр в течение не менее 5 ч. Реактор охлаждают, извлекают контейнер с полученным молибдатом лития в перчаточном боксе. Способ позволяет получить высокочистый молибдат лития с примесной чистотой не менее 99,995 мас.%, при этом проводить большее количество циклов синтеза с использованием одного контейнера при уменьшении воздействия с контейнерным материалом. 2 з.п. ф-лы, 4 табл., 2 ил., 3 пр.
Изобретение относится к химической технологии получения особо чистых органических полупроводников и касается разработки способа глубокой очистки металлоорганических комплексов, образованных 8-гидрокисхинолином c металлами, с общей формулой MeQy, которые применяются в качестве органических полупроводниковых материалов, например, в технологии OLED. Очистку проводят пересублимацией в динамическом вакууме со ступенчатым нагревом до рабочей температуры и отжигом вещества при нескольких промежуточных температурах с контролем удаления легколетучих фракций и с перегревом приемника выше температуры сублимации основного вещества во время отжига. Температуру и время начала удаления каждой фракции определяют по началу ускоренного увеличения давления остаточных газов, а время окончания удаления фракции – по восстановлению давления, предшествующего началу удаления фракции. Изобретение обеспечивает повышение эффективности глубокой очистки металлорганических комплексов методом вакуумной пересублимации путем подавления механического переброса частиц исходной смеси в приемную зону, а также путем устранения возможности перекрытия зон осаждения продукта и примесей. 4 з.п. ф-лы, 4 табл., 4 пр.

Изобретение относится к химической промышленности, а именно к люминофорному материалу на основе металлорганических комплексов, однородно распределенных в объеме аэрогеля в форме частиц размером от 0.01 до 1 мм или монолитов с характеристическим размером от 1 до 100 мм или в виде пленок толщиной от 0.01 до 1 мм. Материал содержит металлорганический комплекс трис(8-оксихинолят)алюминия (Alq3) или металлорганический комплекс 8-оксихинолина с координационными s-, р-, d-, f-элементами, который равномерно распределен в аэрогеле на основе оксидов элементов из группы кремния, циркония, алюминия, рутения или лантаноидов, который имеет плотность от 0.05 до 0.2 г/см3, развитую удельную поверхность от 100 до 1500 м2/г и содержит мезо- и макропоры, соотношение между которыми находится в пределах от 1:3 до 1:9 соответственно, при этом металлорганический комплекс в виде частиц с размером от 2 до 500 нм составляет в люминофорном материале от 0.5 до 5% мас. Также предложен способ получения люминофорного материала. Изобретение позволяет получить люминофорный материал, который является высоко прозрачным для видимой части спектра и обладает повышенной защищенностью от воздействия внешней среды. 2 н. и 2 з.п. ф-лы, 2 ил., 2 пр.
Изобретение относится к технологии неорганических материалов и касается разработки способа получения хлорида гадолиния (III) с пониженным содержанием урана и тория. Способ получения хлорида гадолиния (III) заключается в очистке отжигом в динамическом вакууме. Причем на первой стадии проводят прокаливание хлорида гадолиния в атмосфере хлороводорода при атмосферном или пониженном давлении при температуре 500-600°С. На второй стадии осуществляют отжиг хлорида гадолиния в вакууме при температуре 600-700°С и остаточном давлении не выше 10-4 Торр. Обеспечивается повышение глубины очистки хлорида гадолиния по урану и торию до величины менее 10-8 мас.% при содержании основного вещества не менее 99,999 мас.%, при этом обеспечивается упрощение известных технологий и получение минимального количества отходов. 3 з.п. ф-лы, 1 табл., 2 пр.

Настоящее изобретение относится к производным 2,1,3-бензохалькогенадиазолов общей формулы где X=О или S, в качестве органических красителей для использования в светоизлучающем слое органического светоизлучающего диода. Также предложен органический светоизлучающий диод. Технический результат: получены новые органические соединения, которые могут применяться в качестве материала светоизлучающего слоя, позволяющего получить светоизлучающие диоды со световыми характеристиками свечей, имеющих высокую яркость электролюминесценции. 2 н. и 9 з.п. ф-лы, 5 пр., 3 ил.

Изобретение относится к производным [1,2,5]халькогенадиазоло[3,4-с]пиридинов общей формулы (1), в которой X = S или Se. Изобретение также относится к органическому светоизлучающему диоду, содержащему несущую основу, выполненную в виде подложки с размещенным на ней прозрачным слоем анода, на котором расположен дырочный блокирующий слой, затем расположен дырочный проводящий слой, на котором расположен светоизлучающий слой органического вещества, выполненный из соединения общей формулы (1) и органического транспортного материала, затем последовательно расположены электропроводящий слой и слой, улучшающий инжекцию электронов, поверх которого расположен катод. Технический результат – получены новые соединения, которые могут использоваться в качестве органических красителей в светоизлучающем слое органического безопасного светоизлучающего диода, наиболее подходящего для освещения жилых помещений в темное время суток. 2 н. и 9 з.п. ф-лы, 3 ил., 5 пр.

Изобретение относится к технологии неорганических материалов, в частности высокочистых элементарных веществ, и касается разработки способа повышения примесной чистоты элементарного теллура. В способе очистки элементарного теллура методом вакуумной дистилляции перед очисткой к исходному теллуру добавляют навеску металлического цинка. Затем полученную смесь расплавляют и выдерживают при температуре 750-850°С при давлении инертного газа, достаточном для подавления испарения расплава. Затем снижают температуру до 490-530°С и проводят дистилляцию в вакууме, осаждают очищенный теллур при температуре 390-410°С. Обеспечивается повышение эффективности очистки теллура от примеси селена в процессе вакуумной дистилляции, а также упрощение процесса очистки и уменьшение количества стадий. 6 з.п. ф-лы, 2 табл., 2 пр.

Изобретение может быть использовано для получения триоксида молибдена высокой чистоты, используемого при выращивании монокристаллов трибората лития, при синтезе сырья для выращивания монокристаллов молибдата лития и теллуритных стекол. Очистку триоксида молибдена ведут сублимацией в вакууме. Перед очисткой триоксид молибдена смешивают с оксидом d-элемента. Полученную смесь прокаливают при температуре 650-700°C. При этом создают давление кислорода 0,2-1 атм. Прокаленную смесь очищают сублимацией в вакууме при температуре 650-715°C, осаждают очищенный триоксид молибдена в градиенте температуры 520-600°C. Сублимацию смеси в вакууме чередуют с окислением смеси при давлении кислорода 0,1-0,4 атм. Изобретение позволяет снизить количество примесей металлов в триоксиде молибдена до 10-3 мас.%, получить триоксид молибдена с фиксированным отклонением состава от стехиометрического в пределах области гомогенности фазы α-MoO3 с содержанием основного вещества не менее 99,995 мас.% и выходом очищенного продукта 82-85%, уменьшить количество отходов. 2 табл., 2 пр.

Изобретение относится к способу получения органических электролюминесцентных материалов на основе координационных соединений европия для последующего использования в технологии органических светоизлучающих диодов и устройств (ОСИД или OLED). Описывается способ получения органического электролюминесцентного материала 1,10-фенантролин-три-(теноилтрифторацетоната) европия (III) формулы [Eu(TTA)3(Phen)], где Еu - катион европия, ТТА - теноилтрифторацетон, Phen - 1,10-фенантролин. Способ заключается во взаимодействии хлорида европия или его гексагидрата, теноилтрифторацетона и 1,10-фенантролина в этиловом спирте при 40±5°C. Выделяющийся в процессе реакции хлористый водород удаляют из зоны реакции с использованием отгонки вместе с этиловым спиртом. Предложенный способ обеспечивает получение целевого продукта по упрощенной технологии с выходом, составляющим не менее 98,0%, и чистотой не менее 99,9 %, пригодного для использования в качестве высокоэффективного эмиттера красного цвета свечения при изготовлении ОСИД(OLED)-структур. 1 з.п. ф-лы, 3 ил., 1 табл., 3 пр.

Изобретение предназначено для определения содержания примесей в порошковых органических материалах. Способ основан на определении доли частиц в препарате, цвет которых отличен от цвета частиц основного вещества препарата при освещении его как видимым, так и ультрафиолетовым излучением. Так как цвет люминесценции является специфической характеристикой люминофора, частицы другого цвета с высокой вероятностью являются частицами примеси. Количественное определение объемной доли таких частиц представляется нецелесообразным, определяется поверхностная доля областей, имеющих цвет, отличный от цвета люминофора. Поверхностная доля областей определяется как отношение площади областей на изображении к площади всего изображения. Значение поверхностной доли областей, соответствующих микровключениям, дает верхнюю оценку объемной доли микровключений. Изобретение обеспечивает повышение качества светоизлучающих изделий на основе органических и металлоорганических люминофоров. 11 ил.

 


Наверх