Патенты автора Копытов Сергей Михайлович (RU)

Использование: в области электротехники для приема информации по линиям энергопитания переменного тока с модуляцией основной гармоники питающего напряжения. Технический результат - упрощение схемного решения приема информации при передаче информационных пакетов и выделения сигналов маркеров, адреса и данных и обеспечение гальванической развязки. Информация передается информационными пакетами, состоящими из поля адреса и поля данных, ограниченных маркерами. На приемной стороне для выделения сигналов маркеров применяют селектор импульсов, выделяющий сигналы с амплитудой, выходящей за установленные пределы. Сигналы маркера формируют в виде логического «0», по времени большего, чем время полупериода сетевого напряжения, а сигналы адреса и данных в виде логической «1». Устройство, реализующее способ, содержит последовательно соединенные стабилитроны, выполняющие функцию порогового устройства, транзисторные оптопары, выполняющие функцию гальванической развязки, и транзисторный ключ, выполняющий функцию формирователя импульсов. 2 н.п. ф-лы, 4 ил.

Использование: в области электротехники для передачи информации по линиям энергопитания переменного тока с модуляцией основной гармоники питающего напряжения. Технический результат - повышение качества электрической энергии и электромагнитной совместимости при организации обмена информационными пакетами по линиям энергопитания переменного тока. Способ заключается в том, что информация, предназначенная для передачи, формируется в пакеты, каждый из которых состоит из поля адреса и поля данных, ограниченных маркерами, при этом первый и второй маркеры ограничивают поле адреса - номер устройства, для которого предназначены последующие данные, а второй и третий маркеры ограничивают поле данных. При этом маркер представляет собой пониженную по амплитуде полуволну одного полупериода сетевого напряжения. 1 ил.

Изобретение относится к лазерной технологии и может быть использовано для обработки поверхности драгоценных металлов. Осуществляют напыление на поверхность изделия пленки из окисляющегося металла. Локально нагревают лазерным излучением пленку с последующим построением градуировочной кривой зависимости цвета модифицированной поверхности пленки от режимов лазерного воздействия. Наносят изображение воздействием лазерного излучения на режимах, выбранных по полученной градуировочной кривой. Изобретение позволяет расширить возможности нанесения изображений на изделия из драгоценных металлов. 2 ил., 1 пр.
Изобретение относится к машиностроению, преимущественно может применяться в высокоточных машинах и аппаратах с движущимися деталями, работающих в условиях газовой смазки. Способ обработки пористого вкладыша газового подшипника заключается в том, что в качестве материала вкладыша используется предварительно обработанная до нужной геометрической формы заболонная часть древесины, вываренная в концентрированном растворе поваренной соли, торцы которой после вываривания замазываются клейким раствором, и затем заготовку помещают в сушильный шкаф. Сушку проводят в ступенчатом температурном режиме. Предложенный способ полностью избавляет заболонные части древесины от смолистых веществ за счет вываривания заготовки в концентрированном растворе соли. Раствор вытягивает смолистые вещества, сохраняя однонаправленное расположение капилляров. При этом отсутствует растрескивание заготовки по торцам и в середине благодаря применению клейкого раствора. Применяемый способ сушки обеспечивает однородность и постоянную структуру, так как из заготовки легче удалить, выпарить, воду, чем смолы, этим обеспечивается постоянная проницаемость пористого вкладыша газового подшипника и позволяет уменьшить время, требуемое на его изготовление. Технический результат: уменьшение требуемого времени на изготовление пористого вкладыша.

Изобретения относятся к области машиностроения, в частности к управляемому газомагнитному подшипниковому узлу и способу его работы. Подшипниковый узел содержит соленоид, магниты, полюса и ярма электромагнитов, вкладыш газового подшипника, отверстия для пористых вставок, рубашку, обмотку электромагнитов, камеру для подачи газовой смазки в пористые вставки, крепления для датчиков измерения зазора, отверстие для подачи газовой смазки в камеру. Соленоид установлен на валу. Магниты установлены между отверстиями вкладыша подшипника. Электромагниты установлены продольно в корпусе опоры. Вкладыш газового подшипника встроен в опору. Отверстия для пористых вставок расположены во вкладыше газового подшипника. Рубашка охватывает вкладыш подшипника. Камера для подачи газовой смазки расположена между подшипником и рубашкой. Крепления для датчиков измерения зазора располагаются на полюсах электромагнитов. Отверстие для подачи газовой смазки расположено в рубашке. Способ работы управляемого газомагнитного подшипникового узла заключается в создании дополнительной электромагнитной силы, направленной на увеличение несущей способности подшипникового узла. Дополнительно создается магнитная сила, управление которой происходит посредством изменения тока в электромагнитах, при этом использование датчиков изменения зазора позволяет обеспечить точное контролируемое вращение вала в опоре и малое изменение толщины газового слоя, а продольное расположение электромагнитов позволяет уменьшить магнитное трение из-за продольного направления магнитного потока. Достигается уменьшение изменения воздушного зазора. 2 н.п. ф-лы, 1 ил.

 


Наверх