Патенты автора Султанов Махсуд Мансурович (RU)

Изобретение относится к электроэнергетике и может быть использовано для контроля уровня накопления усталостных повреждений проводов воздушной линии электропередачи (ЛЭП). Сущность: на линии электропередачи выбирают первый участок провода в месте подвеса провода на опору и второй участок провода той же длины, расположенный на удалении от места подвеса. Измеряют напряжения и токи первого и второго участков. Определяют поверхностное активное сопротивление первого и второго участка провода. Уровень накопления усталостных повреждений определяют по изменению поверхностного активного сопротивления первого участка провода на подвесном зажиме. Изменение поверхностного активного сопротивления первого участка провода определяют по разности активных сопротивлений со вторым участком. Измерение поверхностного активного сопротивления двух участков провода осуществляется по мостовой схеме при пропускании импульса тока высокой частоты. Измерения осуществляются периодически автономным устройством, устанавливаемым на опоре с наиболее нагруженным пролетом контролируемого участка линии. Результаты измерений передаются диспетчеру. Технический результат: повышение надежности контроля технического состояния провода. 2 ил.

Изобретение относится к автоматике и может быть использовано в системах управления силовыми энергетическими установками. Технический результат заключается в повышении эксплуатационной надежности энергетического оборудования и достигается за счет того, что в способе управления энергетическим комплексом, построенным на основе n-каналов регулирования, состоящих из задатчика, силовой установки, при этом первый канал включает удаленный выделенный (облачный) сервер, заключающемся в формировании сигнала рассогласования между заданным и действительным значениями выходного параметра силовой установки каждого канала регулирования, формировании сигнала управления силовой установкой, управлении отдаваемой в сеть мощностью силовой установки, равномерном распределении нагрузки между силовыми установками, заданное значение выходного параметра силовой установки формируют на основе сигнала прогнозируемой мощности силовой установки, поступающего от удаленного сервера, при этом сигнал прогнозируемой мощности силовой установки, поступающий от удаленного сервера, определяют из условия оптимального распределения мощности между параллельно работающими силовыми установками методом характеристик относительных приростов топлива. 1 ил.

Изобретение относится к энергетике, к области паросиловых энергетических установок, а именно к тепловым электрическим станциям (ТЭС) с паровыми турбинами и системами обеспечения надежности, экономичности, безопасной эксплуатации и восстановления работоспособности ТЭС. Технический результат, заключающийся в обеспечении эксплуатационной надежности, экономичности и безопасности ТЭС достигается за счет того, что тепловая паротурбинная электростанция с парогенерирующей установкой, содержащая парогенерирующую установку, к которой через соответствующие вентили подсоединены выход водородной установки гидролиза твердого реагента-алюминия в реакционном сосуде, выход электрохимической установки на топливных элементах, выход электролизерной установки и выход кислородной установки, дополнительно снабжена магистралью подачи резервного топлива с вентилем, подключенной к парогенерирующей установке, а также датчиками концентрации водорода, выполненными с возможностью подключения своими входами к выходу водородной установки гидролиза твердого реагента-алюминия в реакционном сосуде, выходу электрохимической установки на топливных элементах, выходу электролизерной установки, и к участку основной магистрали подачи водорода у входа парогенерирующей установки соответственно, при этом выходы датчиков концентрации водорода подключены к блоку сравнения, соединенному с блоком управления, выполненным с возможностью подключения ко всем вентилям. 1 ил.

Изобретение относится к области электротехники, в частности к способу управления режимами электроэнергетической системы (ЭЭС). Технический результат - снижение потерь активной мощности при эксплуатации ЭЭС. Согласно способу, центры управления сетями энергокластеров оснащают устройствами сбора и хранения оперативных данных, поступающих с подстанций от автоматизированных системы управления технологическим процессом, и дополнительными вычислительными устройствами (ДВУ) с мультиагентными системами управления. Через ДВУ выявляют ограничения от ДВУ смежных энергокластеров для поддержания уровней граничных напряжений и перетоков активной мощности. С учетом собранных в ДВУ данных измерений и полученных ограничений реализуют рабочие алгоритмы управления с локальной оптимизацией режимов ЭЭС по напряжению и реактивной мощности. Управление режимом работы ЭЭС проводят всеми ДВУ в параллельном режиме и начинают с проведения каждым ДВУ оптимизации режима внутри своего энергокластера. С каждого ДВУ по вычислительной сети отправляют ДВУ смежных энергокластеров сообщения со значениями напряжений и параметрами перетоков активной мощности, которые были получены в ходе расчета оптимального режима для своего энергокластера. Каждым ДВУ от ДВУ смежных энергокластеров получают сообщения с ограничениями, наложенными по напряжению и параметрам перетока активной мощности и представленными для каждого ДВУ в виде целевой функции потерь, обеспечивающей поддержание уровней граничных напряжений и перетоков активной мощности. С учетом этих ограничений, а также критериев, обусловленных бизнес-интересами, корректируют оптимизацию режима своего энергокластера. 3 з.п. ф-лы, 2 ил.

Изобретение относится к паросиловым энергетическим установкам, а именно к тепловым электрическим станциям (ТЭС) с паровыми турбинами и системами обеспечения экологичности и восстановления их работоспособности. Технический результат, заключающийся в создании тепловой паротурбинной электростанции с парогенерирующей водородно-кислородной установкой, обеспечении экономичной эксплуатационной маневренности и временных условий восстановления работоспособности ТЭС, достигается за счет применения водородной установки гидролиза твердого реагента-алюминия в реакционном сосуде, кислородной установки, электрохимической установки на топливных элементах и электролизерной установки, кроме того, водородная установка гидролиза твердого реагента, кислородная, электролизерная и электрохимическая установка на топливных элементах магистралями с вентилями подсоединены к входу парогенерирующей водородно-кислородной установки. 1 ил.

Изобретение относится к способам моделирования процессов получения водорода за счет гидролиза твердого реагента - алюминия в реакционном сосуде, и может быть использовано для оптимизации гидродинамических процессов и массообмена в альтернативных вариантах проектируемых генераторах водорода на основе гидролиза твердого реагента - алюминия в реакционном сосуде. Технический результат, заключающийся в повышении безопасности, ускорении и упрощении процесса оптимизации гидродинамических процессов и массобмена, достигается за счет использования веществ-имитаторов, при котором твердую фазу - частицы алюминия - моделируют частицами питьевой соды, жидкую фазу - водный раствора едкого натра - моделируют водным раствором уксусной кислоты. Кроме того, контактирование осуществляют в реальном или модельном реакторе в течение необходимого времени. Предлагаемый способ моделирования химического реактора водорода апробирован в лабораторных условиях. 1 ил.

Изобретение относится к энергетическому оборудованию и может быть использовано в качестве электрохимического генератора на основе водородно-кислородных топливных элементов для резервного электропитания аварийных объектов, при этом в заявленном генераторе газообразный водород получают в проточном реакционном сосуде путем гидролиза водной суспензии алюминия. Повышение безопасности и эффективности работы электрохимического генератора обеспечивается за счет выполнения генератора водорода в виде проточного реакционного сосуда гидролиза алюминия, входы которого соединены трубопроводами с баком водной суспензии алюминия и с баком водного раствора едкого натра при их одновременном подключении к системе вытеснения в виде баллона со сжатым газом. Первый выход реакционного сосуда гидролиза алюминия соединен с первым входом батареи топливных элементов, а второй выход - с баком для сбора водного раствора продуктов гидролиза. Батарея топливных элементов снабжена системой подачи кислорода, подключенной к батарее баллонов с кислородом. 1 ил.

Изобретение относится к энергетическому оборудованию и может быть использовано для получения электрической энергии как в стационарных установках, так и на транспорте, а также при производстве и эксплуатации энергоустановок. Повышение эффективности работы энергоустановки с электрохимическим генератором на основе водородно-кислородных топливных элементов, а также повышение безопасности, снижение металлоемкости и эксплуатационных расходов благодаря исключению баллонной системы подачи кислорода и водорода является техническим результатом изобретения. Энергоустановка с электрохимическим генератором на основе водородно-кислородных топливных элементов с системой подачи водорода и кислорода по трубопроводам в батарею топливных элементов, с датчиком температуры батареи топливных элементов и блоком управления, дополнительно содержит насосную систему подачи компонентов получения кислорода и водорода, содержащую турбонасосный агрегат с каталитическим газогенератором разложения перекиси водорода, бак с перекисью водорода, бак с водной суспензией алюминия, бак с водным раствором едкого натра, реакционный сосуд гидролиза твердого реагента - алюминия, и систему вытеснения подаваемых компонентов. 2 з.п. ф-лы, 1 ил.

Изобретение относится к энергетическому оборудованию и может быть использовано для получения водорода как в стационарных установках, так и на транспорте. Генератор водорода содержит реакционный сосуд, магистраль подачи водного раствора едкого натра, магистраль выдачи водорода, а также контейнер с твердым реагентом - алюминием. Реакционный сосуд выполнен проточным. Генератор снабжен магистралью подачи водной суспензии с твердым реагентом - алюминием, смешивающим устройством в виде тангенциальных вводов в реакционный сосуд на магистралях подачи водного раствора едкого натра и подачи водной суспензии с твердым реагентом - алюминием, кольцеобразным фильтром и магистралью вывода водного раствора продуктов гидролиза, которые установлены в нижней части реакционного сосуда. Изобретение позволяет повысить качество производственного процесса и снизить эксплуатационные расходы. 1 ил.

Изобретение относится к способам получения водорода за счет гидролиза твердого реагента - алюминия в реакционном сосуде и может быть использовано для получения водорода в сфере автономной энергетики, преимущественно в энергоустановках с электрохимическими генераторами, как в стационарных установках, на транспорте, так и при ремонтах электрогенераторов с водородным охлаждением и в химической промышленности. Заявлен способ получения водорода путем гидролиза алюминия в реакционном сосуде, который заполнен водным раствором едкого натра. Способ получения водорода проводят в реакторе непрерывного действия путем подачи алюминия в виде водной суспензии. Водную суспензию алюминия перед подачей в реакционный сосуд гелируют (загущают). В качестве гелирующей (загущающей) добавки используют модифицированную полиакриловую кислоту или агар-агар. Изобретение позволяет повысить экономичность производства водорода и улучшить качество гидролиза и регулирование процесса получения водорода.1 з.п. ф-лы, 2 ил.

 


Наверх