Патенты автора Гареев Артур Радикович (RU)

Изобретение относится к электротехнике, химической промышленности, нанотехнологии и может быть использовано при изготовлении сенсорных экранов, датчиков ускорения, сейсмографов, систем диагностики состояния конструкций, пьезогенераторов утилизации механической энергии, гибких пьезоактюаторов, а также светодиодов и солнечных элементов. Сначала подготавливают поверхность полимерного поляризованного пьезоматериала путём обработки кислородной, воздушной или аргоновой плазмой в виде атмосферного, тихого или коронного разряда. Отдельно готовят суспензию серебряных наностержней и суспензию графеновых частиц. На поверхность подготовленного полимерного поляризованного пьезоматериала наносят либо смешанную суспензию, содержащую графеновые частицы и серебряные наностержни, либо последовательно наносят суспензию, содержащую графеновые частицы, и суспензию, содержащую серебряные наностержни, причем для формирования последнего слоя снова наносят суспензию, содержащую графеновые частицы. Указанные суспензии наносят либо на одну, либо на несколько сторон подготовленного полимерного поляризованного пьезоматериала. Проводящий слой на указанном пьезоматериале получают в результате сушки. Для формирования этого слоя в виде электродов на поверхность полимерного поляризованного пьезоматериала наносят маску из цианакрилата. Электросопротивление полученного гибкого гибридного пьезоматериала, содержащего проводящие слои графеновых частиц, не превышает 60 Ом/кв. Исключается необходимость обработки поверхности пьезоматериала агрессивными и токсичными химическими агентами. 2 з.п. ф-лы, 3 ил., 2 табл., 6 пр.

Изобретение может быть использовано для изготовления высокотемпературного теплоизоляционного материала. Способ получения прессволокнита включает подготовку и смешение массы с ее последующей сушкой, дроблением и прессованием. Масса для изготовления прессволокнита включает связующее и наполнитель в соотношении 1,3:1 в пересчете на сухой остаток. В качестве связующего используют раствор порошкообразной фенолформальдегидной смолы новолачного типа с 1%-ным содержанием свободного фенола в этиловом, изопропиловом или пропиловом спирте. В качестве наполнителя используют вискозный углеродный волокнистый нетканый материал войлок. Смешение массы проводят при комнатной температуре в течение не менее 40 минут, сушку при 75°С в течение 3 часов в закрытом смесителе с циркуляцией воздуха и удалением летучих веществ из рабочей камеры. Технический результат заключается в снижении плотности и теплопроводности прессволокнита при одновременном увеличении его прочности. 1 табл., 10 пр.

Изобретение относится к полимерным композиционным материалам, которые могут быть использованы для изготовления тонкостенных элементов теплозащиты деталей и узлов авиакосмической техники, а также при изготовлении гибких трубопроводов. Предложен гибкий слоистый композиционный материал с высокой абляционной стойкостью, состоящий из армирующего углеродного или кремнеземного волокнистого наполнителя и эластомерной матрицы с высоким содержанием силикона и фенолформальдегидной смолы, отличающийся тем, что содержание эластомерной матрицы в материале составляет 60-80 масс.%, при этом матрица представляет собой смесь кремнийорганического эластомера, фенолформальдегидной смолы в виде порошка с модифицирующими добавками как отдельными, так и в комбинациях, представляющих собой порошки тетрабората натрия, карбидов, нитридов, боридов металлов или их смеси, стеклянные микросферы, фтористый калий. Содержание фенолформальдегидной смолы в виде порошка составляет 20-75 масс.% от массы кремнийорганического эластомера. Общее содержание модифицирующих добавок составляет 1-10% от массы эластомерной смеси. Технический результат – получение гибкого слоистого композиционного материала с двумерной схемой армирования, способного сохранять кратковременную работоспособность при высоких (до 1700 K и выше) температурах, в том числе в окислительных средах. 8 з.п. ф-лы, 3 ил., 1 табл., 17 пр.

Изобретение относится к получению высокопористого открытоячеистого углеродного материала и может быть использовано при изготовлении электродов, суперконденсаторов, остеопластического материала для замещения дефектов костной ткани, носителей катализаторов, а также экранов тепловой защиты и защиты от электромагнитного излучения. Кроме того, материал изобретения может выступать в качестве основы для нанесения металлических, керамических и гибридных покрытий с целью получения композиционного конструкционного материала. Способ получения высокопористого открытоячеистого углеродного материала осуществляется с использованием заготовки из пенополиуретана, пропитанной синтетической термореактивной смолой с последующей термообработкой до 1000°С и изотермической выдержкой при этой температуре в инертной атмосфере, с насыщением карбонизованной заготовки пироуглеродом из газовой фазы. Пропитку проводят с помощью раствора термореактивной смолы в этиловом спирте с вязкостью от 30 до 70 Пуаз под воздействием ультразвука в течение не менее 30 мин, с последующей конвективной сушкой при температуре не более 80°С, в течение 5-30 мин, термообработку проводят с постоянной скоростью нагрева 3-4°С/мин, с изотермической выдержкой в течение не менее 30 мин. Насыщение пироуглеродом проводят при температуре не менее 950°С в атмосфере метана до достижения прироста массы не менее 150% от массы заготовки. Технический результат - получение материала с повышенными характеристиками пористости и прочности, при этом не проводя модификации импрегнирующего раствора. 2 ил., 1 табл., 1 пр.

Изобретение относится к области медицины, в частности, к хирургии и травматологии и раскрывает способ получения медицинской салфетки из графитированной углеродной ткани на основе вискозы. Способ включает получение графитированной углеродной ткани на основе вискозы, ее отмывку, электрохимическую обработку, которая включает погружение ткани в водный раствор KI концентрации 0,08-0,10 г/л с добавлением 0,1 мл/л спиртового раствора йода в концентрации 0,04-0,08 г/г, и NH4OH до получения нейтральной среды, в течение 15-30 минут при напряжении 70-80 В и плотности тока 6,67А/м2, дальнейший раскрой ткани на салфетки, обработку раскроенных краев углеродной салфетки силиконом, стерилизацию и упаковку. Салфетка из графитированной углеродной ткани характеризуется высокой сорбционной способностью - свыше 0,95 г/г, отличается высоким содержанием углерода 99,6 мас.%. Изобретение позволяет ускорять заживление ран различной этиологии без присыхания к поврежденному участку кожи, позволяет избежать образования рубцов и шрамов, обеспечивает антибактериальный эффект. Изобретение может быть использовано для лечения глубоких гнойных ран в общей хирургии, травматологии, комбустиологии, акушерстве и гинекологии, проктологии, стоматологии, отоларингологии и так далее и позволяет избежать сепсиса и инфицирования. 5 пр.

Изобретение относится к области получения композиционных материалов с низкой объемной плотностью, в частности углерод-полимерных композитов на основе многомерно-упорядоченного углеволокнистого каркаса и полимерной матрицы. Способ изготовления объемно армированного композиционного материала включает изготовление армирующего каркаса путем набора стержней из углеродного волокна, помещение армирующего каркаса в форму, пропитку его под давлением термореактивной смолой, а затем полимеризацию смолы. Армирующий каркас выполнен трехмерным и составлен из стержней диаметром 0,8-0,9 мм. Пропитка термореактивной смолой осуществляется методом инфузии в три этапа: вакуумирование до подачи связующего от 20 до 30 мин, подача связующего под вакуумом от 30 до 40 мин со скоростью 0,35 л/мин, промежуточная выдержка под вакуумом от 20 до 40 мин. Изобретение обеспечивает повышение физико-механических свойств изделий. 2 табл.

 


Наверх