Патенты автора Фролов Алексей Александрович (RU)

Изобретение относится к способам монтажа цистерн на рамы автомобильных полуприцепов. Способ сборки автомобильной цистерны-полуприцепа характеризуется первоначальной установкой задней рамы автоцистерны между упорами, выполненными в задней части стапеля для сборки автомобильных цистерн-полуприцепов, далее опорную плиту размещают на подвижной каретке (5), а заднюю опору автоцистерны монтируют на задней раме. Каретку (5) устанавливают на необходимом удалении от задней рамы, укладывают автоцистерну передней частью на опорную плиту, а задней частью - на заднюю опору и контролируют вертикальное положение заливных и сливных люков автоцистерны. Устанавливают оставшиеся опоры автоцистерны, приваривают опоры и опорную плиту к автоцистерне и указанные опоры забалчивают на задней раме. Изобретение снижает трудозатраты на сборку безрамных цистерн-полуприцепов при соблюдении требований по точности расположения шкворня относительной осей. 6 ил.

Изобретение относится к газодобывающей промышленности. В предлагаемом способе оставшийся газ утилизируют из концевой части опорожняемого участка путем выполнения последовательности переключений запорной арматуры. Остаточное давление в технологической нитке, после выравнивания давления на входе в первую или вторую ступень сеноманской дожимной компрессорной станции, утилизируют на факел промысла. Использование способа позволяет утилизировать часть газа с технологической нитки без смещения рабочих характеристик нагнетателя газоперекачивающих агрегатов сеноманской дожимной компрессорной станции в зону неустойчивой работы, а также сокращают потери природного газа. 1 ил.

Изобретение относится к области эксплуатации и ремонта действующих газопроводов и может применяться для очистки газосборного коллектора от жидкости, а также при подготовке коллектора к эксплуатации в осенне-зимний период в целях снижения коэффициента сопротивления из-за накопившейся жидкой фазы. Техническим результатом является сокращение временных, технологических и материальных затрат при очистке газосборного коллектора, а также предотвращение потерь углеводородного сырья. Сущность изобретения заключается в том, что при реализации заявленного способа производят отключение опорожняемого участка, осуществляют подачу в газосборный коллектор инертного газа, скорость потока инертного газа увеличивают до минимальной скорости, обеспечивающей вынос жидкости. При этом давление инертного газа поддерживают ниже разрешенного давления в газосборном коллекторе. Углеводородное сырье, за счет разности давления, направляется в сепаратор, где жидкая фаза отбивается и направляется в разделительные емкости для дальнейшей подготовки, а газ утилизируется на эжектор технологической нитки низкотемпературной сепарации. 1 з.п. ф-лы, 1 ил.

Изобретение относится к строительным материалам и может быть использовано в качестве комплексной добавки в растворную смесь при производстве пенобетона. Комплексная добавка для пенобетонной смеси содержит, мас.%: карбонат кальция с тонкостью помола 3000 см2/г 97,0-97,5, фторид натрия 0,5-0,7, состав, содержащий, мас.%: полимер поливинилацетата 85-90, дибутилфталат - не менее 5, вода - до 10, 2,0-2,3. Технический результат – снижение водопоглощения, увеличение электросопротивления и прочности при изгибе пенобетона. 1 табл., 1 пр.

Изобретение относится к газовой промышленности, в частности к способам эксплуатации обводненных газовых скважин и транспортировке их продукции. Технический результат заключается в увеличении дебита газовой скважины и сокращении расхода ингибитора гидрато- и льдообразования за счет повышения гидравлической эффективности газосборного трубопровода и снижения его влияния на эксплуатационные характеристики обводненной газовой скважины. В способе удаления жидкости с забоя газовой скважины по технологии эксплуатации по концентрическим лифтовым колоннам подают пластовый флюид из пласта в скважину, разделяют пластовый флюид на забое скважины на газовый поток и газожидкостный поток с механическими примесями, транспортируют газовый поток на устье скважины со скоростью, не обеспечивающей подъем жидкости, транспортируют газожидкостный поток с механическими примесями на устье скважины с давлением выше, чем у газового потока, и со скоростью, обеспечивающей подъем жидкости с механическими примесями, вводят в продукцию скважины ингибитор гидрато- и льдообразования, транспортируют продукцию скважины с ингибитором гидрато- и льдообразования на установку комплексной подготовки газа. Газожидкостный поток после устья скважины направляют на сепарацию для отделения от газа жидкой фазы, отделяют взвешенные частицы от жидкой фазы, выводят осадок, направляют очищенную жидкую фазу в расположенную рядом поглощающую скважину, вводят отсепарированный газ в газовый поток, вводят в смешанный газовый поток ингибитор гидрато- и льдообразования и затем транспортируют смешанный газовый поток с ингибитором гидрато- и льдообразования на установку комплексной подготовки газа. 1 ил., 1 табл.

Изобретение относится к строительным материалам и может быть использовано в качестве комплексной добавки в растворную смесь при производстве пенобетонов. Комплексная добавка для пенобетонной смеси содержит, мас.%: пенообразующую добавку на протеиновой основе 75-80, красную кровяную соль 20-25. Технический результат – повышение прочности на растяжение при изгибе и показателя трещиностойкости пенобетона. 1 табл., 1 пр.
Изобретение относится к области медицины, а именно к диагностике. Выполняют оценку возраста пациента и оценивают состояние коронарных артерий КА до и после ЧКВ по методике BCIS-1 Myocardial Jeopardy Score (JS). Определяют индекс реваскуляризации (ИР) по отношению разности состояния КА до ЧКВ и состояния КА после ЧКВ к состоянию КА до ЧКВ. Измеряют объем необратимо поврежденного миокарда посредством определения максимального уровня сердечного тропонина I в сыворотке крови в течение первых 72 часов от начала ангинозного статуса (MaxTnI). Оценивают время, прошедшее от начала ангинозного статуса до достижения эффективной реперфузии. При превышении порогового значения, равного 0,64720, прогнозируют развитие неблагоприятного исхода. Прогноз (logit (р)) определяют по оригинальной формуле. Способ позволяет повысить точность прогноза, обеспечить возможность индивидуального прогноза развития МАСЕ и/или ХСН II-IV ФК после ИMпST у пациентов без предшествующего коронарного анамнеза. 1 пр.
Изобретение относится к области металлургии, в частности к термической обработке литых деталей железнодорожного подвижного состава в виде боковых рам тележек грузовых вагонов, изготовленных из сталей марок: 20 ГЛ, 20 ГФЛ, 20 ГТЛ. Для повышения усталостной прочности детали, снижения образования трещин и увеличения долговечности литую деталь нагревают в интервале температур от Ас3 до Ас3+100°С, выдерживают в течение 60-90 мин, затем перемещают деталь в термосе в закалочное устройство, в котором осуществляют охлаждение в два этапа, причем сначала поверхность детали интенсивно охлаждают с температуры Ас3 в течение 0,5 с со скоростью 890-1180°С/с до температуры окончания мартенситного превращения (Мк) путем объемного душирования дисперсной водовоздушной смесью, а затем - струями воды до температуры не более 200°С в течение 8-10 мин с обеспечением снижения скорости охлаждения наиболее нагруженных в эксплуатации мест деталей в 8-10 раз по сравнению с остальными частями изделия. 1 пр.

Изобретение относится к области металлургии, а именно к термической обработке литых боковых рам или надрессорных балок тележек грузовых вагонов из низкоуглеродистых сталей Для повышения усталостной прочности детали и сопротивления разрушению при циклическом нагружении деталь из стали 20ГЛ нагревают до температуры, не превышающей Ac3+150°C, с выдержкой в течение 30-120 мин, затем перемещают её в защитном кожухе в закалочное устройство за время, не превышающее 5 мин. Охлаждение в закалочном устройстве ведут быстродвижущимся потоком охлаждающей жидкости под давлением 1-5 атм в течение 2-20 мин в две фазы, сначала в течение 5-10 сек деталь охлаждают равномерно объемом воды 3-10 м3, а затем объемом воды 9-30 м3 с охлаждением наиболее ответственных мест детали объемом воды, на 10-50% большим упомянутого объема. Под наиболее ответственными местами детали понимаются места, наиболее часто подверженные разрушению при эксплуатации под действием усталостных нагрузок. Для боковых рам тележек вагонов такими местами являются области буксовых проемов, особенно области внутреннего и наружного радиусов R55. 3 з.п. ф-лы, 3 ил., 2 табл.

Изобретение относится к обработке углеводородного газа с использованием низкотемпературного процесса и может быть использовано в процессах промысловой подготовки к транспорту продукции газоконденсатных месторождений. Технический результат заключается в интенсификации процесса низкотемпературной сепарации газа с десорбцией метанола из водометанольного раствора в сепарируемый газ. Согласно способу подготовки углеводородного газа к транспорту газовый поток от кустов скважин подают на первичную сепарацию, десорбируют газовым потоком метанол из водометанольного раствора, вводят в газовый поток метанол, охлаждают газовый поток воздухом, углеводородным конденсатом, газом в две ступени, проводят вторичную сепарацию газового потока, вводят в газовый поток метанол, охлаждают газовый поток газом и за счет понижения давления проводят окончательную сепарацию газового потока, нагревают в три ступени отсепарированный газ газовым потоком и выводят газ из установки, смешивают жидкую фазу после первичной сепарации газового потока и водный раствор после десорбции метанола, вводят в нее жидкую фазу после вторичной сепарации газового потока, направляют для отделения от углеводородного конденсата, газа и водного раствора, вводят газ в газовый поток перед окончательной сепарацией, выводят водный раствор из установки, направляют жидкую фазу после окончательной сепарации для разделения на углеводородный конденсат, газ и водометанольный раствор, возвращают газ на повторную окончательную сепарацию совместно с газовым потоком, вводят водометанольный раствор в газовый поток, выводят водный раствор из газового потока, углеводородный конденсат нагревают газовым потоком и смешивают с углеводородным конденсатом после первичной и вторичной сепарации, направляют углеводородный конденсат для отделения от него газа низкого давления и водометанольного раствора, эжектируют газ низкого давления в газовый поток, выводят из установки углеводородный конденсат и водометанольный раствор. Отделенную при вторичной сепарации жидкую фазу направляют в газовый поток низкого давления. 1 ил., 1 табл.

 


Наверх