Патенты автора Терещенко Олег Евгеньевич (RU)

Изобретение относится к области спектроскопических измерений и касается импульсного терагерцового спектрометра с полупроводниковым генератором на эффекте модуляции приповерхностного поля. Спектрометр содержит импульсный лазер, светоделительный элемент, блок генерации, блок оптической линии задержки, систему транспорта терагерцового излучения, блок регистрации. Импульсный лазер оптически связан со светоделительным элементом, разделяющим пучок лазерного излучения на два пучка с подачей одного пучка в блок генерации, а второго пучка в блок оптической линии задержки. Блок генерации оптически связан с системой транспорта терагерцового излучения. Блок регистрации оптически связан с управляемым блоком оптической линии задержки и системой транспорта терагерцового излучения. Блок генерации выполнен в виде структуры металл-диэлектрик-полупроводник, обеспечивающей возможность модулирования напряженности приповерхностного поля. Кроме того, блок регистрации выполнен с возможностью регистрации напряженности терагерцового электромагнитного поля. Технический результат заключается в увеличении соотношения сигнал/шум, обеспечении возможности генерации терагерцового излучения в широком диапазоне длин волн лазерного излучения и расширении спектрального диапазона терагерцового излучения в высокочастотную область спектра. 4 з.п. ф-лы, 2 ил.

Изобретение относится к области трехмерных кристаллических топологических изоляторов. Слой топологического изолятора Pb1-xSnxTe:In на кристаллической подложке состоит из последовательно эпитаксиально выращенных на кристаллической подложке первого слоя Pb1-xSnxTe:In, где х=0,2-0.3 толщиной 0,5-1 мкм с концентрацией индия 0,2-2% и второго слоя Pb1-xSnxTe:In, где х≥0,3 толщиной 10-20 нм с концентрацией индия 0.1-1,5%. Кристаллическая подложка содержит последовательно эпитаксиально выращенные на Si(111) слой CaF2 толщиной 5-15 нм и BaF2 толщиной 10-20 нм. Способ изготовления слоя топологического изолятора Pb1-xSnxTe:In на кристаллической подложке включает последовательное выращивание на предварительно химически очищенной подложке Si(111) слоя CaF2 толщиной 5-15 нм методом молекулярно-лучевой эпитаксии при температуре 230-750°С из эффузионной ячейки, содержащей CaF2 чистотой не менее 99.99%, при остаточном давлении в камере не хуже 5×107 Па со скоростью 0.1-0.3 Å/с, слоя BaF2 толщиной 10-20 нм при температуре 230-750°С из эффузионной ячейки, содержащей BaF2 чистотой не менее 99,99%, слоя Pb1-xSnxTe:In, где х=0,2-0,3 толщиной 0,5-1 мкм при температуре 230-320°С с концентрацией индия 0,2-2% и слоя Pb1-xSnxTe:In толщиной 10-20 нм при температуре 230-320°С с концентрацией индия 0,1-1.5% из двух потоков Pb1-xSnxTe:In и SnTe при соотношении потоков, обеспечивающем концентрацию олова, соответствующую стехиометрической формуле Pb1-xSnxTe с х≥0,3. Задачей настоящего технического решения является разработка обладающего свойствами топологического изолятора слоя Pb1-xSnxTe, легированного индием, на кристаллической подложке, и способа изготовления такого слоя. 2 н. и 1 з.п. ф-лы, 3 ил.

Использование: для поляризованных светодиодов и спин-транзисторов. Сущность изобретения заключается в том, что спин-детектор содержит подложку, на которой последовательно выполнены: барьерный слой, первый слой из GaAs или из AlxGa1-xAs, второй слой с квантовыми ямами из InxGa1-xAs или из GaAs, третий слой из GaAs или из AlxGa1-xAs, третий слой с квантовыми ямами из InxGa1-xAs или из GaAs, четвертый слой из GaAs или из AlxGa1-xAs, первый слой с квантовыми ямами из InxGa1-xAs или из GaAs, второй слой из GaAs, ферромагнитный слой и защитный слой. Технический результат: обеспечение возможности проведения измерения спиновой поляризации с пространственным разрешением, измерения трех компонент спина в одной структуре, повышения стабильности гетероструктуры Pd/Fe/GaAs (001) к деградации электрофизических и оптических свойств, а также возможность прогрева до температуры 200°С и отсутствие реактивации. 12 з.п. ф-лы, 2 ил.

Изобретение относится к технологии изготовления полупроводниковых приборов и может быть использовано при их изготовлении на основе МДП-структур на InAs. Подложку InAs подвергают предварительной обработке, включающей очистку поверхности ее от загрязнений и естественного окисла. После чего на подложке в вакуумной камере проводят формирование диэлектрического слоя посредством анодного окисления подложки - анодирование рабочей поверхности подложки в плазме. По завершении анодирования на диэлектрический слой напыляют слой металла. Предварительную обработку проводят при условиях, обеспечивающих полную очистку поверхности от загрязнений и естественного окисла с достижением стабильности и инертности рабочей поверхности в условиях отсутствия воздействия окислительной среды, плазмы. Анодирование осуществляют с использованием окислительной газовой среды с составом Ar:O2:CF4 в соотношении (80-х)% : 20% : x%, где х - количество CF4, равное от 5% до 20%. В качестве плазмы используют плазму таунсендовского разряда в нормальном и переходном режиме его горения. При этом подложку помещают на расстоянии от катода, выбираемом с учетом соблюдения условия стационарности газоразрядной плазмы. Давление окислительной газовой среды поддерживают обеспечивающим стабильное горение разряда с формированием в разрядном промежутке латерально однородного разряда. В результате обеспечивается снижение величины встроенного заряда до значений менее 5×1011 см-2, улучшается однородность по толщине и химическому составу диэлектрического слоя на большей площади исходной пластины. 12 з.п. ф-лы, 4 ил.

 


Наверх