Патенты автора Зайцев Николай Григорьевич (RU)

Изобретение относится к области авиадвигателестроения, в частности к конструкции деталей и сборочных единиц (ДСЕ) соплового аппарата турбины высокого давления (СА ТВД) газотурбинного двигателя, преимущественно для высокоманевренных самолетов. Деталь сборочной единицы соплового аппарата турбины высокого давления изготовлена из жаропрочного и жаростойкого сплава на основе никеля с теплозащитным покрытием, содержащим металлический подслой, керамический подслой и верхний керамический слой, при этом металлический подслой толщиной от 35 до 130 мкм выполнен плазменным напылением порошкового сплава на основе никеля, содержащего 18-25% кобальта, 13-22% хрома, 10-15% алюминия и 0,1-0,9 иттрия, причем объемная пористость и объемное содержание включений оксидов в слое в сумме составляют не более 7%, керамический подслой толщиной от 120 до 220 мкм выполнен плазменным напылением порошкового материала на основе диоксида циркония, содержащего 7,5-11,5% оксида диспрозия, при этом пористость слоя составляет от 5 до 20%, а верхний керамический слой толщиной от 30 до 130 мкм выполнен плазменным напылением порошкового материала на основе диоксида циркония, содержащего 45-65% оксида гадолиния, при этом пористость слоя составляет от 5 до 20%. Техническим результатом изобретения является повышение ресурса ДСЕ СА ТВД газотурбинного двигателя до 2000 часов за счет снижения температуры на поверхности ДСЕ путем нанесения на поверхности, наиболее контактирующие с газовым потоком, многослойного теплозащитного покрытия с верхним керамическим слоем, обладающим низкой теплопроводностью. 1 табл., 1 пр.

Изобретение относится к способам защиты легированных сплавов на основе титаналюминидов с преобладающей фазой γ-TiAl. Сплавы этого типа отличаются малой плотностью, высокой удельной прочностью и стойкостью к окислению и предназначены для изготовления конструкций, работающих при высоких температурах и нагрузках. На поверхность изделия из упомянутого сплава наносят порошок с содержанием компонентов, мас. %: Со 20-26, Cr 18-23, Al 6-11, Y 0.3-0.9, Та 2-6, Ni – остальное, с применением технологии высокоскоростного газопламенного напыления. Соотношение керосина и кислорода выбирают 1:1, давление в камере сгорания составляет более 4,9 МПа, скорость подачи порошка - 12-16 г/мин. Дистанция напыления составляет 250-350 мм, а скорость передвижения по поверхности сплава 0.3-0,7 м/с. Получают покрытие толщиной не менее 150 мкм. Способ обеспечивает повышение термостойкости сплава на основе TiAl до 920°С, высокие механические свойства при комнатной температуре и температуре эксплуатации. 2 ил., 1 табл., 1 пр.

Изобретение относится к порошковой смеси для газотермического напыления уплотнительного покрытия лопаток турбин. Смесь содержит порошок на основе диоксида циркония, стабилизированного оксидом иттрия, в качестве основного компонента и порообразователь - порошок фторопласта марки Ф-4Д или порошок лавсана в количестве 1…10 мас.%. Обеспечивается повышение качества характеристик уплотнительных покрытий. 1 табл., 2 пр.

Изобретение относится к области металлургии и может быть использовано для деталей, работающих одновременно в условиях износа и воздействия коррозионно-активных сред, а именно для сопловых лопаток газотурбинных двигателей, испытывающих воздействие высокоскоростных газовых потоков, резкие смены температуры, эрозию и коррозию, и авиационных и космических аппаратов, испытывающих воздействие набегающего потока диссоциированного воздуха в атмосфере со скоростью выше 2000 м/с. Двухслойное жаростойкое покрытие на изделиях из углерод-углеродных композиционных материалов содержит жаростойкий подслой и внешний слой из стабилизированного диоксида циркония (ZrO2-Y2O3), причем подслой выполнен из никелевого сплава Ni23Co20Cr8AlY, а внешний слой дополнительно содержит дисилицид молибдена (MoSi2) при следующем соотношении компонентов, вес.%: стабилизированный диоксид циркония (ZrO2-Y2O3) - 10-20, дисилицид молибдена (MoSi2) - остальное, при этом внешний слой покрытия (MoSi2-ZrO2-Y2O3) имеет толщину 250-300 мкм, а подслой (Ni23Co20Cr8AlY) - 20-40 мкм. Изобретение направлено на создание покрытия, обладающего эффектом самозалечивания и на снижение термических напряжений слоев покрытия. 1 пр., 2 табл.

Изобретение относится к области порошковой металлургии, в частности к порошковым материалам для газотермического напыления покрытий, и может быть использовано для защиты деталей горячего тракта авиационных газотурбинных двигателей (ГТД), наземных газотурбинных установок (ГТУ) и ракетных двигателей (РД) от воздействия высоких температур, эрозионного износа и коррозии. Порошковый материал имеет общую формулу AXBYCZ (А=Nd, Sm, Gd, Dy, Y или их смеси; В=Zr, Hf или их смеси; С=О; 1,5⋅Х+2⋅Y=6,0…8,0; X:Y=0,80…1,25, размер частиц порошка составляет 5…150 мкм, насыпная плотность порошка находится в диапазоне 0,5…3,5 г/см3, а размер кристаллитов (областей когерентного рассеяния) составляет 1…300 нм. Порошковый материал также может содержать оксиды элементов: SiO2 - до 0,05% мас., CaO - до 0,1% мас., MgO - до 0,1% мас., Fe2O3 - до 0,1% мас., Al2O3 - до 0,1% мас. и TiO2 - до 0,8% мас. или их смесь. Технический результат заключается в повышении стойкости теплозащитных покрытий к воздействию высоких температур, а также в достижении теплозащитного эффекта на поверхности детали. 9 з.п. ф-лы, 1 табл.

Изобретение относится к области газотермического напыления покрытий, в частности к способам напыления жаростойких и теплозащитных покрытий. Наносят основной металлический жаростойкий подслой. Наносят верхний керамический теплозащитный слой с последующей лазерной обработкой. Лазерную обработку выполняют с использованием лазерного луча, имеющего П-образное распределение энергии по сечению. Выходные значения мощности и скорость сканирования лазерного луча задают соответственно в диапазоне 100-6000 Вт и 0,01-1 м/с. В другом варианте изобретения наносят основной металлический жаростойкий подслой. Наносят верхний керамический теплозащитный слой с последующей лазерной обработкой. Лазерную обработку выполняют с использованием лазерного луча, имеющего П-образное распределение энергии по сечению. Выходные значения мощности и скорость сканирования лазерного луча задают соответственно в диапазоне 100-6000 Вт и 0,01-1 м/с. Затем повторно проводят лазерную обработку с параметрами лазерного луча, соответствующими предыдущей лазерной обработке. до получения покрытия с заданными свойствами. Техническим результатом является повышение стойкости теплозащитных покрытий к воздействию высоких температур (термостойкости и жаростойкости), эрозии и коррозии с помощью оплавления верхнего керамического слоя. 2 н. и 8 з.п. ф-лы, 1 табл., 1 пр.

 


Наверх