Патенты автора Леканов Анатолий Васильевич (RU)

Герметичный многоступенчатый центробежный электронасос предназначен для перекачивания охлаждающей жидкости в контуре системы терморегулирования. Электронасос устроен следующим образом: рабочее тело попадает в насос через входной патрубок и далее на предвключенный шнек, затем попадает на лопатки центробежного колеса закрытого типа, после чего жидкость проходит через каналы кольцевого диффузора, охлаждая при этом статор электродвигателя, и попадает на лопатки второго центробежного колеса, пройдя петлевой направляющий аппарат, затем уходит из электронасоса через выходной патрубок. Техническим результатом данного изобретения является повышение ресурса работы электронасоса, в том числе при широком диапазоне температур и пониженном входном давлении. 2 ил.

Изобретение относится к области машиностроения и ракетно-космической техники и может быть использовано в роторных машинах, к которым предъявляются высокие требования по надежности и долговечности, которые работают в условиях невесомости или у которых валы расположены вертикально, вследствие чего отсутствует радиальная нагрузка на подшипники качения. Комбинированная опора привода содержит корпус с размещенными в нем двумя комбинированными подшипниками, каждый из которых состоит из подшипника качения и статодинамического подшипника, работающего при вращении внутреннего кольца, расположенными на валу ротора. Статодинамический подшипник выполнен с изменяемым рабочим эксцентриситетом, что обеспечивается конструкцией наружного кольца в виде двух эксцентриковых втулок, причем рабочие эксцентриситеты обоих статодинамических подшипников одинаковы как по величине, так и по направлению. Технический результат: уменьшение биений и вибраций в подшипнике качения за счет создания постоянной нагружающей силы в опоре при незначительном увеличении силы сопротивления качению в опоре, что приводит к увеличению надежности и долговечности работы опоры. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области поверхностного пластического деформирования, а именно к выглаживанию и упрочнению наклепом поверхностей венцов зубчатых колес. Способ заключается в том, что зубчатые колеса, образующие коническую передачу внутреннего зацепления, устанавливают в корпус с приработочным материалом так, что начальное значение угла между осями зубчатых колес устанавливается больше расчетного на величину (5…9)' для достижения после приработки расчетных значений углов между осями прирабатываемых зубчатых колес, прикладывают к ним крутящий момент и осевое усилие и прирабатывают колеса до достижения значений осевого усилия и угла между осями зубчатых колес заданных расчетных значений. При этом на входной и выходной валы устанавливаются маховики для уменьшения влияния случайных изменений угловой скорости на кинематическую точность зацепления. В результате обеспечивается улучшение механических свойств прирабатываемых поверхностей в сочетании с низкой кинематической погрешностью прирабатываемых пар зацепления. 2 ил.

Изобретение относится к системам поворота солнечной батареи (СПСБ) космического аппарата (КА). Изобретение предназначено для размещения элементов СПСБ для вращения солнечной батареи большой мощности и передачи электроэнергии с солнечной батареи на КА. Система поворота солнечной батареи большой мощности содержит вал привода с фланцем для стыковки солнечной батареи, привод для ее вращения, силовое и телеметрическое токосъемные устройства. Силовое токосъемное устройство разделено на силовое токосъемное устройство с положительными электрическими цепями и силовое токосъемное устройство с отрицательными электрическими цепями. Токосъемные устройства установлены на своих валах, связаны с валом привода и замкнуты на корпус СПСБ через демпфирующий элемент. Вал привода установлен в корпус привода системы поворота солнечной батареи на опорном подшипнике с предварительным натягом. Техническим результатом изобретения является обеспечение повышенной передаваемой мощности с солнечной батареи на КА, повышение надежности системы электропитания КА и снижение массы конструкции. 1 ил.

Баллон предназначен для помещения или хранения газов в сжатом, сжиженном или твердом состоянии. Баллон содержит металлический лейнер, имеющий нижнее и верхнее днища, внешнюю упрочняющую армирующую оболочку из ленточного композиционного материала, пропитанного связующим. Лейнер выполнен в виде эллипсоида, образованного соединением двух днищ между собой, при этом стенки лейнера выполнены одинаковой толщины. Внешняя упрочняющая армирующая оболочка выполнена по всей наружной поверхности лейнера с элементами крепления конструкции металлопластикового баллона, которые выполнены одной и той же лентой в процессе намотки армирующей оболочки лейнера, при этом ленты, образуя петли, равномерно размещенные снаружи по периметру соединения днищ, скрепляются попарно при помощи пластин в одной точке с равномерным натяжением при креплении баллона. При этом все пластины находятся на равноудаленном от баллона расстоянии и выполнены с отверстием для возможности крепления конструкции баллона резьбовым соединением. Техническим результатом является уменьшение массы устройства. 3 ил.

Изобретение может быть использовано при производстве сосудов высокого давления из композиционных материалов, предназначенных для помещения или хранения газов в сжатом, сжиженном или твердом состоянии. Способ изготовления металлопластикового баллона высокого давления, включающий: изготовление металлического лейнера; термическую обработку металлического лейнера; нанесение антикоррозионного покрытия на внешнюю поверхность металлического лейнера; изготовление внешней упрочняющей армирующей оболочки, операцию сушки и полимеризации упрочняющей армирующей оболочки; операцию автофреттажа. Лейнер изготавливают в виде эллипсоида, образованного соединением двух днищ между собой, при этом стенки лейнера выполнены одинаковой толщины. Внешнюю упрочняющую армирующую оболочку выполняют по всей наружной поверхности лейнера с элементами крепления конструкции металлопластикового баллона. При этом ленты образуют петли посредством намотки на жесткое технологическое разборное съемное кольцо. Изобретение направлено на создание способа изготовления металлопластикового баллона высокого давления с пониженной массой и заданными характеристиками прочности. 4 ил.

Изобретение относится к герметичным электронасосным агрегатам (ЭНА) для систем терморегулирования космических аппаратов. Корпусы электродвигателя и насоса ЭНА из алюминиевого сплава герметично соединены и разделены цилиндрической немагнитной экранирующей оболочкой из титанового сплава. Корпус электродвигателя соединен с торцевым периметром оболочки посредством фланца со стороны рабочего колеса с помощью основной биметаллической втулки из титанового и алюминиевого сплавов. Оболочка другим торцевым периметром с наружной и внутренней сторон соединена сваркой с дном корпуса электродвигателя с помощью первой и второй дополнительных слоистых биметаллических втулок. Соединения сваркой выполнены аналогично соединению с помощью основной слоистой биметаллической втулки своими титановыми и алюминиевыми сплавами соответственно с титановыми и алюминиевыми деталями ЭНА. Центральная часть дна корпуса насоса выполнена с входным патрубком, соосным валу и установленным с зазором между его внутренней торцевой поверхностью и торцевой поверхностью вала. Ротор выполнен в виде трубы с закрепленным на ее внутренней поверхности шнеком. Другая торцевая поверхность вала по периметру трубы соединена сваркой с периметром центрального входа, выполненного в рабочем колесе ЭНА с боковым выходом. Изобретение направлено на повышение КПД, надежности, уменьшение массы. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области машиностроения, в частности к космической технике, и может быть использовано при проектировании систем раскрытия конструкций космических аппаратов. Привод раскрытия содержит корпус с установленными в нем зубчатым редуктором и электродвигателем. В качестве электродвигателя применены два коллекторных электродвигателя постоянного тока, определяющие скорость вращения или торможения привода. В кинематическую цепь каждого электродвигателя включены инерционные муфты, а часть редуктора до инерционных муфт имеет передаточное отношение не более 10000. Достигается повышение надежности устройства. 1 ил.

Изобретение относится к машиностроению и может быть использовано в качестве способа работы при реализации его в планетарном редукторе

Изобретение относится к машиностроению и может быть использовано в качестве способа работы при реализации его в трехступенчатом планетарном редукторе

Изобретение относится к машиностроению и может быть использовано в качестве способа работы при реализации его в трехступенчатом планетарном редукторе

Изобретение относится к машиностроению и может быть использовано в электроприводах раскрытия крупногабаритных трансформируемых механических систем космических аппаратов, а также в других областях техники

Изобретение относится к машиностроению и может быть использовано в качестве электропривода, например, на космическом аппарате

Изобретение относится к машиностроению и может быть использовано в электроприводах механических систем космических аппаратов, в приводах другого назначения и в других областях техники

Изобретение относится к машиностроению и может быть использовано в качестве электропривода, например, на космическом аппарате

Изобретение относится к машиностроению и может быть использовано в качестве способа работы при реализации его в трехступенчатом планетарном редукторе

Изобретение относится к области машиностроения, в частности к космической технике, может быть использовано при проектировании систем раскрытия конструкций космических аппаратов и предназначено для приведения в действие раскрывающихся узлов механических систем космического аппарата

Изобретение относится к космической технике и может быть использовано при проектировании системы поворота солнечной батареи (СПСБ)

Изобретение относится к машиностроению и может быть использовано в качестве способа работы при реализации его в трехступенчатом планетарном редукторе

Изобретение относится к машиностроению и может быть использовано в качестве электропривода, например, в космическом аппарате

Изобретение относится к космической технике, в частности к зеркальным антеннам с развертываемым рефлектором зонтичного типа

Изобретение относится к космической технике, в частности к зеркальным антеннам с развертываемым крупногабаритным рефлектором зонтичного типа

Изобретение относится к области арматуростроения

Изобретение относится к космической технике, в частности к технологии изготовления термостатируемых трехслойных сотовых панелей с встроенными в них тепловыми трубами

Изобретение относится к космической технике и может быть использовано при изготовлении систем терморегулирования (СТР) космических аппаратов (КА)

Изобретение относится к испытаниям систем терморегулирования, преимущественно телекоммуникационных спутников, с гидроаккумуляторами, газовая полость которых заправлена двухфазным рабочим телом и отделена от жидкостной полости сильфоном

Изобретение относится к наземным испытаниям систем терморегулирования космических аппаратов

Изобретение относится к машиностроению, а именно к механизмам для преобразования вращательного движения в поступательное

Изобретение относится к системам терморегулирования (СТР) преимущественно телекоммуликационных спутников

Изобретение относится к космической технике, в частности к зеркальным антеннам с развертываемым крупногабаритным рефлектором зонтичного типа

Изобретение относится к системам терморегулирования, преимущественно телекоммуникационных спутников

Изобретение относится к области терморегулирования, преимущественно автоматических космических аппаратов

Изобретение относится к космической технике, а точнее к области проектирования и эксплуатации ракетных двигательных установок (ДУ) космических аппаратов (КА)

Изобретение относится к машиностроению, а именно к механизмам для преобразования вращательного движения в поступательное

Изобретение относится к космической технике и может использоваться в системах терморегулирования (СТР) автоматических космических аппаратов (КА) на околоземных орбитах

 


Наверх