Система поворота солнечной батареи большой мощности

Изобретение относится к системам поворота солнечной батареи (СПСБ) космического аппарата (КА). Изобретение предназначено для размещения элементов СПСБ для вращения солнечной батареи большой мощности и передачи электроэнергии с солнечной батареи на КА. Система поворота солнечной батареи большой мощности содержит вал привода с фланцем для стыковки солнечной батареи, привод для ее вращения, силовое и телеметрическое токосъемные устройства. Силовое токосъемное устройство разделено на силовое токосъемное устройство с положительными электрическими цепями и силовое токосъемное устройство с отрицательными электрическими цепями. Токосъемные устройства установлены на своих валах, связаны с валом привода и замкнуты на корпус СПСБ через демпфирующий элемент. Вал привода установлен в корпус привода системы поворота солнечной батареи на опорном подшипнике с предварительным натягом. Техническим результатом изобретения является обеспечение повышенной передаваемой мощности с солнечной батареи на КА, повышение надежности системы электропитания КА и снижение массы конструкции. 1 ил.

 

Изобретение относится к космической технике и может быть использовано при проектировании системы поворота солнечной батареи (СПСБ) космического аппарата.

Настоящее изобретение предназначено для размещения элементов СПСБ для вращения солнечной батареи большой мощности и передачи электроэнергии с солнечной батареи на космический аппарат.

Наиболее близким к заявленному техническому решению является система поворота солнечной батареи патент RU 2466069, которая содержит корпус, полый вал с фланцем для стыковки солнечной батареи, привод для ее вращения, силовое и телеметрическое токосъемные устройства. Выходной вал установлен в корпусе привода поворота солнечной батареи на опорном подшипнике с предварительным натягом или его поджатием через опорный подшипник к корпусу системы поворота солнечной батареи пружинами. Данное изобретение взято в качестве прототипа.

Недостатком этой системы является наличие одного силового токосъемного устройства, в котором рядом расположены положительные и отрицательные электрические цепи, и, как следствие, снижается надежность СПСБ из-за увеличения вероятности возникновения короткого замыкания между электрическими цепями. Вторым недостатком является массивная конструкция вала, обусловленная увеличением количества транзитных силовых цепей для обеспечения большей передаваемой мощности и выполнения требования по необходимой изгибной жесткости вала.

Задачей изобретения является изменение компоновки СПСБ для обеспечения увеличения передаваемой электрической мощности с солнечной батареи на космический аппарат, снижение массы конструкции и повышение функциональных возможностей.

Поставленная задача достигается тем, что система поворота солнечной батареи большой мощности содержит вал привода с фланцем для стыковки солнечной батареи, привод для ее вращения, силовое и телеметрическое токосъемные устройства. При этом силовое токосъемное устройство разделено на силовое токосъемное устройство с положительными электрическими цепями и силовое токосъемное устройство с отрицательными электрическими цепями, установленные на своих валах, связанные с валом привода и замкнутые на корпус СПСБ через демпфирующий элемент, при этом вал привода установлен в корпус привода системы поворота солнечной батареи на опорном подшипнике с предварительным натягом.

Техническим результатом, обеспечиваемым приведенной совокупностью признаков, является обеспечение повышенной передаваемой мощности с солнечной батареи на космический аппарат, повышение надежности системы электропитания космического аппарата, снижение массы конструкции и необходимого ресурса токосъемных устройств.

Суть изобретения поясняется чертежом, где на фиг.1 изображен общий вид заявленного устройства в разрезе.

Система поворота солнечной батареи состоит из привода 1, вала привода 2, установленного на опорном подшипнике 3, силовых токосъемных устройств 6 и 7, телеметрического токосъемного устройства 8, расположенных на валу привода 2 и замыкаются на корпус СПСБ через демпфирующий элемент 10. Повышенная жесткость конструкций достигается постоянным поджатием вала привода 2 к корпусу привода 1 за счет предварительного натяга опорного подшипника 3. Повышенная точность положения оси вращения вала привода 2 достигается опорным подшипником 3. Зубчатое колесо 4 установлено на валу 9 привода 1. Зубчатое колесо 5 установлено на валу привода 2.

Работает СПСБ следующим образом. Привод 1 передает вращение на вал привода 2, вращение от привода 1 на вал привода 2 передается зубчатой передачей с зубчатыми колесами 4, 5.

Токосъемные устройства 6, 7 и 8 передают электрическую энергию, команды и сигналы с вращающейся солнечной батареи на космический аппарат как при вращении, так и в остановленном состоянии. Постоянное поджатие вала привода 2 к корпусу привода 1 обеспечивается предварительным натягом в опорном подшипнике 2 как при вращении, так и при остановке выходного вала.

Система поворота солнечной батареи большой мощности, которая содержит вал привода с фланцем для стыковки солнечной батареи, привод для ее вращения, силовое и телеметрическое токосъемные устройства, отличающаяся тем, что силовое токосъемное устройство разделено на силовое токосъемное устройство с положительными электрическими цепями и силовое токосъемное устройство с отрицательными электрическими цепями, установленные на своих валах, связанные с валом привода и замкнутые на корпус системы поворота солнечной батареи через демпфирующий элемент, при этом вал привода установлен в корпус привода системы поворота солнечной батареи на опорном подшипнике с предварительным натягом.



 

Похожие патенты:

Изобретение относится к управлению ориентацией навигационных спутников с антеннами и солнечными батареями (СБ). Способ включает ориентацию электрической оси антенны (первой оси спутника) на Землю и ориентацию панелей СБ на Солнце.

Изобретение относится к электротехнике, а именно к автономным системам электропитания (СЭП) космических аппаратов (КА), использующим в качестве первичных источников энергии батареи солнечные (БС), а в качестве накопителей энергии - аккумуляторные батареи (АБ).

Изобретение относится к космической технике. Способ управления ориентацией космического аппарата (КА) с неподвижными панелями солнечных батарей (СБ) при выполнении экспериментов включает гравитационную ориентацию КА продольной осью вдоль местной вертикали и закрутку вокруг продольной оси, соответствующей минимальному моменту инерции.

Изобретение относится к космической технике. Способ управления ориентацией космического аппарата (КА) с неподвижными панелями солнечных батарей (СБ) при выполнении экспериментов на орбитах с максимальной длительностью теневого участка включает гравитационную ориентацию КА продольной осью вдоль местной вертикали и закрутку вокруг его продольной оси, соответствующей минимальному моменту инерции.

Изобретение относится к системам контроля работы механических узлов солнечной батареи (СБ) космического аппарата (КА) в условиях эксплуатации. Устройство содержит цепочку из N (напр., N=5) последовательно соединенных контактных датчиков (КД) (21, …, 25), к которым параллельно подключены резисторы (61, …, 65) номинальным сопротивлением 1∗R0, 2∗R0, …, 2N-1∗R0.

Изобретение относится к энергоснабжению космического аппарата (КА) с помощью солнечных батарей (СБ). КА содержит корпус с множеством поверхностей (11), на которых расположены устройства (20) для собирания света внутрь корпуса, где установлена СБ (30).

Изобретение относится к космической технике и может быть использовано в раскрывающихся солнечных батареях космических аппаратов. Устройство отделения и раскрытия створок солнечной батареи (УОРССБ) космического аппарата содержит раму, два пакета створок, прижимные замки с крюками, качалки, подпружиненную тягу с коромыслами, взаимодействующими с верхними створками, подпружиненные штоки со сквозными отверстиями под шпильку с торцами, взаимодействующими с профильными пазами, упорные кольца с упорами.

Изобретение относится к механизмам ориентации (поворота) солнечных батарей (СБ). Система поворота СБ содержит корпус (1) с крышками (2), выходной вал, выполненный в виде двух частей (3) и (4) с фланцами (5) и (6) для стыковки с крыльями СБ, и центральный привод (7).

Изобретение относится к управлению ориентацией искусственных спутников Земли (ИСЗ) с солнечными батареями (СБ). В составе ИСЗ (3) дополнительно предусматривают автономный контур (АК) управления ориентацией ИСЗ относительно направления на Солнце (2).

Изобретение относится к средствам крепления на космическом аппарате (КА) элементов оборудования, в частности солнечных батарей (СБ). КА содержит корпус (1) и панель (6) СБ, закрепленную на раме (2) в виде стержневой ферменной конструкции, имеющей форму скошенной пирамиды.

Группа изобретений относится к развертываемым солнечным батареям (СБ) космического аппарата. СБ снабжена штангой в виде шарнирно соединенных корневого (1) и телескопического (2) звеньев и выполнена в форме складываемых гармошкой створок (17). В транспортном положении звенья (1, 2) сложены вместе, а створки уложены в контейнеры с основаниями (19) и крышками (20). Крышки (20) и основания (19) закреплены соответственно на звеньях (2) и (1) и развернуты длинными сторонами вдоль оси сложенной штанги. Поворотная панель (24) служит для поджатия створок (17) к крышке (20) и их поворота на 45° для равномерного схода. При переводе СБ в рабочее положение сначала разворачивают контейнеры длинными сторонами перпендикулярно оси штанги и фиксируют крышки и основания на звеньях (2) и (1). Затем взаимным разворотом звеньев (1, 2) на угол 180° производят начальное раскрытие створок (17). Процесс развертывания СБ завершают выдвижением промежуточных труб телескопического звена (2). Технический результат группы изобретений состоит в повышении надежности раскрытия СБ, улучшении её массогабаритных и эксплуатационно-технологических характеристик. 2 н. и 4 з.п. ф-лы, 8 ил.

Изобретение относится к электротехнике, а именно к системам электроснабжения космических аппаратов с использованием в качестве первичных источников энергии солнечных батарей, а в качестве накопителей энергии - аккумуляторных батарей. Технический результат - повышение надежности эксплуатации аккумуляторной батареи. Способ электропитания заключается в том, что в случае пониженной температуры аккумуляторной батареи зарядный ток первоначально направляют на обогрев аккумуляторной батареи и только после того как температура аккумуляторной батареи достигнет значения выше минимального будет осуществляться заряд аккумуляторной батареи номинальным током заряда. В процессе заряда аккумуляторных батарей, уровень заряженности контролируют по их напряжению, либо напряжению аккумуляторов каждой аккумуляторной батареи, причем зарядный ток перенаправляют или на обогреватели, или на заряд аккумуляторов в зависимости от температуры аккумуляторной батареи. Термисторы, входящие в состав автономной системы электроснабжения космического аппарата, определяют температуру аккумуляторной батареи и сравнивают полученное значение с заданными значениями. 1 ил.

Изобретение относится к конструкции космических аппаратов (КА), преимущественно для исследований на близких (порядка радиуса орбиты Меркурия) расстояниях от Солнца. КА содержит корпус с теплозащитным экраном, научную и служебную аппаратуру, средства терморегулирования и две пары солнечных батарей (СБ). Панели одной из пар СБ закреплены с возможностью отделения на панелях другой пары СБ и имеют с ними общую ось вращения. Неотделяемые от КА панели СБ имеют две противоположные рабочие поверхности. На одной из них установлены только фотопреобразователи, а на другой - также и чередующиеся с последними теплоотражающие элементы. Выбор действующей рабочей поверхности панели, а также угол её установки определяются плотностью падающих солнечных потоков. Техническим результатом изобретения является снижение массы КА, повышение его надежности и упрощение алгоритма ориентации панелей СБ благодаря эффективной структуре СБ. 1 з.п. ф-лы, 5 ил.

Изобретение относится к бортовым системам электропитания (СЭП), преимущественно низкоорбитальных космических аппаратов (КА) с трехосной ориентацией. СЭП содержит панели солнечной батареи с устройством изменения их ориентации, размещенные с внешней стороны боковых сотопанелей приборного контейнера. В боковые, верхнюю и нижнюю сотопанели контейнера встроены тепловые трубы. СЭП также содержит четыре одинаковых подсистемы электропитания: две рабочих и две резервных. Каждая подсистема установлена на одной из внутренних поверхностей боковых сотопанелей и включает в себя аккумуляторную батарею с зарядным и разрядным устройством. Единый модуль двух таких устройств соседних подсистем установлен на одну боковую сотопанель. Часть внешней поверхности боковых сотопанелей имеет терморегулирующее покрытие с и , а на остальную часть нанесена теплоизоляция. Все сотопанели соединены коллекторными тепловыми трубами с электронагревателями. Технический результат изобретения заключается в оптимизации компоновки СЭП на КА, снижении массы и улучшении термостабилизации основных узлов СЭП. 3 ил.

Изобретение относится к межорбитальному маневрированию космического аппарата (КА). Способ включает выведение КА на переходную орбиту с нулевым наклонением двигателями большой тяги. Перигей этой орбиты лежит ниже геостационарной орбиты (ГСО), а апогей - выше ГСО. Довыведение КА на ГСО производится двигателями малой тяги, работающими непрерывно, за исключением двух симметричных малоэффективных участков переходной орбиты. При этом ориентация КА в инерциальном пространстве неизменна, а панели солнечных батарей зафиксированы под углом до 30° к направлению на Солнце. Одновременно с изменением эксцентриситета переходной орбиты изменяют скорость дрейфа КА в требуемом направлении и совмещают довыведение по эксцентриситету с приведением по долготе. В качестве двигателя малой тяги используют штатный электрореактивный двигатель коррекции долготы КА. Техническим результатом изобретения являются сокращение срока ввода КА в эксплуатацию на ГСО и минимизация затрат топлива на довыведение КА. 1 з.п. ф-лы, 4 ил.

Группа изобретений относится к области сбора, преобразования и передачи солнечной энергии потребителям. Система содержит, в качестве основных, такие элементы как первичное (2), промежуточные (4, 5) и передающее (10) зеркала, а также энергетический модуль (8). Зеркало (2) собирает солнечный свет (1), передаваемый через зеркала (4, 5) на модуль (8). Последний преобразует световой поток в иную (микроволновыую) форму энергию, передаваемую зеркалом (10) потребителю (14), например, на Земле (15). Все основные элементы системы свободно плавают в космическом (околоземном) пространстве и управляются посредством ракетных двигателей малой тяги (2d-2е, 4d-4е, 5d-5е, 8d-8e, 10d-10е) и датчиков (2а-2b, 4а-4b и т.д.). Управление верхнего уровня обеспечивается дистанционной распределенной системой управления (13). Техническим результатом группы изобретений является повышение энергоотдачи системы (по массе) и гибкости (адаптируемости) ее структуры для различных вариантов применения. 2 н. и 32 з.п. ф-лы, 25 ил.

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Способ включает измерение острого угла между направлением на Солнце и плоскостью орбиты КА. При достижении этим углом максимального значения выставляют строительную ось КА, отвечающую максимальному моменту инерции, перпендикулярно плоскости орбиты. Панели неподвижных относительно КА солнечных батарей направляют активной стороной к Солнцу. Далее выполняют закрутку КА вокруг указанной оси с угловой скоростью не менее 2°/с. Измеряют угловую скорость КА и ток солнечных батарей в течение оборота КА вокруг Земли. По измеренным значениям определяют тензор инерции КА. Технический результат изобретения заключается в повышении надёжности определении тензора инерции КА, в т.ч. при отсутствии на его борту инерционных исполнительных органов.

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Согласно способу при совпадении направления на Солнце с плоскостью орбиты КА совмещают строительную ось КА, отвечающую его максимальному моменту инерции, с этим направлением. Выставляют неподвижные относительно КА солнечные батареи перпендикулярно указанной оси, активной стороной к Солнцу. Выполняют закрутку КА вокруг данной оси с угловой скоростью не менее 2°/c. Измеряют угловую скорость КА, ток солнечных батарей и угол между осью закрутки и направлением на Солнце. При достижении этим углом значения не менее 10° определяют тензор инерции КА по измеренным значениям угловой скорости КА и тока солнечных батарей. Технический результат изобретения заключается в повышении надёжности определении тензора инерции КА, в т.ч. при отсутствии на его борту инерционных исполнительных органов.

Использование: в области электротехники для электроснабжения космических аппаратов от первичных источников разной мощности. Технический результат - повышение надежности электроснабжения. Система электроснабжения космического аппарата содержит: группу солнечных батарей прямого солнечного света (1), группу солнечных батарей отраженного солнечного света (7), генерирующий контур (8), стабилизатор напряжения (2), зарядное устройство (3), разрядное устройство (4), аккумуляторную батарею (5), выпрямительное устройство (9), контроллер заряда аккумуляторной батареи (10) и потребителей (6). Переменное напряжение с генерирующего контура (8) преобразуется в постоянное в блоке (9) и поступает на первый вход контроллера заряда аккумуляторной батареи (10). Постоянное напряжение от солнечных батарей отраженного солнечного света (7) поступает на второй вход контроллера заряда аккумуляторной батареи (10). Суммарное напряжение от генерирующего контура и солнечных батарей отраженного солнечного света с первого выхода контроллера (10) попадает на второй вход аккумуляторной батареи (5). Со второго выхода контроллера на первый вход аккумуляторной батареи (5) поступают сигналы управления переключателями (15-21), имеющими контакты 1-3, и выключателями (22-25), имеющими контакты 1-2. Количество управляемых коммутационных аппаратов зависит от числа аккумуляторов в батарее. Для подзаряда выбранного аккумулятора (11-14) на соответствующих переключателях их первые контакты размыкаются с третьим и замыкаются со вторым, на соответствующих выключателях первый и второй контакты замыкаются. Подключенный таким образом ко второму входу батареи соответствующий аккумулятор подзаряжается номинальным зарядным током до поступления команды от контроллера (10) на смену очередного аккумулятора. Потребитель (6) получает питание от оставшихся аккумуляторов, в обход отключенного, с первого выхода батареи (5). 5 ил.

Изобретение относится к области преобразования солнечной энергии и её передачи наземным потребителям. Космическая электростанция содержит солнечный коллектор (1) лепесткового типа, корпус станции (2) и пучок (3) СВЧ-антенн. Коллектор (1) выполнен из пластин (панелей) фотоэлектрических преобразователей - как основных, так и вспомогательных. Пластины имеют прямоугольную и треугольную форму. Их соединения выполнены в виде автоматических крючков и петель, которые при развёртывании коллектора соединяются посредством многолепесткового механизма. В сложенном виде коллектор (1) имеет форму куба. Антенны пучка (3) фокусируют СВЧ-энергию на усилитель, передающий эту энергию на наземные электростанции. Технический результат изобретения направлен на повышение эффективности преобразования и передачи энергии потребителям на обширных территориях Земли. 16 ил.

Изобретение относится к системам поворота солнечной батареи космического аппарата. Изобретение предназначено для размещения элементов СПСБ для вращения солнечной батареи большой мощности и передачи электроэнергии с солнечной батареи на КА. Система поворота солнечной батареи большой мощности содержит вал привода с фланцем для стыковки солнечной батареи, привод для ее вращения, силовое и телеметрическое токосъемные устройства. Силовое токосъемное устройство разделено на силовое токосъемное устройство с положительными электрическими цепями и силовое токосъемное устройство с отрицательными электрическими цепями. Токосъемные устройства установлены на своих валах, связаны с валом привода и замкнуты на корпус СПСБ через демпфирующий элемент. Вал привода установлен в корпус привода системы поворота солнечной батареи на опорном подшипнике с предварительным натягом. Техническим результатом изобретения является обеспечение повышенной передаваемой мощности с солнечной батареи на КА, повышение надежности системы электропитания КА и снижение массы конструкции. 1 ил.

Наверх