Патенты автора Чернявец Антон Владимирович (RU)

Изобретение относится к локационным способам и средствам измерения глубин морских акваторий с помощью эхолотов. Способ определения расстояния от объекта до источника электромагнитного поля путем излучения электромагнитного поля звукового диапазона в направлении дна, приема отраженного сигнала, измерения промежутка времени между моментом излучения до момента приема сигнала и вычисления по полученным результатам глубины посредством эхолота, в котором дополнительно измеряют скорость звука в диапазоне 1400-1600 м/с, с разрешением 0,001 м/с на горизонте установки излучателя и приемной антенны, а также на n-горизонтах по глубине в фиксированных точках, включая придонный горизонт, посредством профилографа скорости звука, установленного на автономном аппарате типа «SONOBOT», при этом также измеряют температуру воды, гидростатическое давление в диапазоне 10, 50, 100, 300 и 600 бар и электропроводность в тех же фиксированных точках, в которых измеряют скорость звука. Эхолот для осуществления способа определения глубин в точке облучения дна, содержащий излучатель, приемник для приема отраженного от дна сигнала, измеритель длительности, опорный генератор и вычислитель с регистратором, при этом выходы излучателя, приемника и опорного генератора подключены к входам измерителя длительности, выход которого подключен к вычислителю, антенна приемника эхолота подключена к измерителю длительности, снабженному дискриминатором особых точек сигнала, а частотой опорного генератора управляют в зависимости от измеряемой глубины и требуемой точности ее измерений, дополнительно содержит блок выработки поправок на скорость звука на n-горизонтах с учетом гидростатического давления, температуры, электропроводности и солености на n-горизонтах. Техническим результатом является повышение достоверности измерения глубин посредством эхолота. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области картографирования и может быть использовано при составлении гляциологических карт. Сущность: получают спутниковое изображение исследуемого района. Получают цифровую модель возвышений исследуемого района. Идентифицируют равнины и гряды на цифровой модели возвышений. Идентифицируют болота и леса на изображении, полученном с помощью спутника. Формируют гляциологическую карту на основе идентифицированных равнин, гряд, болот и лесов. Дополнительно определяют текстуру льда, пределы прочности и модули деформации льда при сжатии и изгибе, строят вертикальные профили ледяного покрова. Кроме того, устанавливают регрессионные зависимости, связывающие пределы прочности льда при сжатии и изгибе и его температуру. При формировании гляциологической карты для конкретного района выделяют ледяные поля, имеющие разную текстуру льда, пределы прочности и модули деформации льда при сжатии и изгибе. Кроме того, осуществляют построение рельефа дна, используя неориентированный граф Кронрода-Риба. При этом выявляют изоморфные подграфы посредством нахождения ближайших подграфов по евклидову расстоянию между вершинами различных графов. Определяют вершины эталонного графа Кронрода-Риба для восстанавливаемого рельефа путем вычисления среднего значения координат и высот (глубин) для каждой вершины подграфов Кронрода-Риба. Технический результат: расширение функциональных возможностей ледникового геоморфологического картографирования и повышение достоверности построения рельефа дна.

Группа изобретений относится к области судовождения, а именно к способу управления движением судна с компенсацией медленно меняющихся внешних возмущений и системе, использующей данный способ. Для управления движением судна с компенсацией медленно меняющихся внешних возмущений используют задатчик курсового угла, приемник спутниковой навигационной системы, рулевой привод, электронную модель движения судна, регулятор-сумматор, интегратор, функциональный преобразователь, датчики угловых ускорений и угловых скоростей, судовой измеритель скорости, судовой многолучевой эхолот, электронную картографическую навигационную информационную систему. Получают управляющий сигнал на вход рулевого привода, используя следующие сигналы: заданного курса и оценки угла курса, невязки, угла перекладки руля, курса с приемника спутниковой навигационной системы. Достигается повышение точности управления движением судна по заданной траектории. 2 н.п. ф-лы, 1 ил.

Изобретение относится к неконтактным океанографическим измерениям и может быть использовано для определения статистических характеристик морского волнения с борта движущегося судна. Техническим результатом является повышение достоверности и информативности измерения высоты морских волн. В способе измерения высоты морских волн определяют расстояние до водной поверхности по времени задержки отраженного от водной поверхности сигнала с помощью сосредоточенной приемоизлучающей системы, определяя ее углы наклона и медленно меняющихся составляющих углов наклона. По величине углов наклона и расстоянию до водной поверхности приемоизлучающей системы вычисляют расстояние по вертикали от уровня приемоизлучающей системы до уровня точки отражения на водной поверхности. Вычисляют вертикальное перемещение приемоизлучающей системы. Определяют профиль морских волн. Высоту волны заданной обеспеченности определяют в зависимости от относительной среднеквадратичной ширины спектра волнового процесса, путем определения основных статистических характеристик среднего периода первичных колебаний, среднего периода максимальных значений амплитуд, средней высоты волн, на основе исходной информации, получаемой измерением первичными измерительными средствами ординат, скоростей и ускорений вертикальных колебаний волнового процесса.

Изобретение относится к области океанографии и может быть использовано для определения характеристик морских ветровых волн. Сущность: устройство состоит из цельнометаллического корпуса (3), внутри которого установлены модуль (1) управления с опционным блоком GPS, источник (2) питания, цифровой трехкомпонентный акселерометр (15), трехкомпонентный магнитометр (17). В нижней части корпуса (3) размещено выдвижное якорное устройство (4), а также стабилизирующее устройство (5). Стабилизирующее устройство (5) выполнено в виде крыльев, сочлененных с корпусом (3) посредством шарниров (6) и резиновых амортизаторов (7). Источник (2) питания снабжен генератором, сочлененным со стабилизирующим устройством (5). Корпус (3) в подводной своей части оснащен демпфирующим устройством (14), состоящим из насадки, снабженной четным количеством лепестков. Лепестки насадки прикреплены к корпусу буя с помощью плоских пружин. Причем четные лепестки прикреплены с наклоном вниз, а нечетные лепестки - с наклоном вверх. Опционный блок GPS модуля (1) управления содержит четырехканальный приемник спутниковых сигналов, выполненный с возможностью одновременного измерения дельтапсевдодальностей до четырех искусственных спутников Земли. При этом приемник спутникового канала связи содержит навигационный фильтр для моделирования движения буя. Корпус (3) оснащен элементами (8) парашютной системы и устройством (13) для передачи информации по радио- и спутниковым каналам связи. Цифровой трехкомпонентный акселерометр (15) и трехкомпонентный магнитометр (17) размещены в едином корпусе (16). Технический результат: повышение точности определения характеристик морских ветровых волн. 1 ил.

Изобретение может быть использовано для определения океанографических характеристик и выявления их пространственного распределения. Сущность: система включает подспутниковые (судовые) и спутниковые средства измерений океанографических характеристик. Подспутниковые средства измерений представлены пятью наборами измерительных датчиков и комплексных измерительных устройств, первый (1) из которых размещен на носовой части судна, находящейся под водой, второй (2) - на носовой части судна, находящейся над водой, третий (3) - на борту судна, четвертый (18) - на дрейфующих буях, а пятый (19) - на спускаемых за борт зондах. Первый (1) набор состоит из датчиков температуры, электропроводности и давления морской воды, концентрации кислорода, показателя рассеяния света в воде, устройства (12) забора забортной морской воды. Второй (2) набор состоит из датчиков температуры, влажности и давления атмосферного воздуха, направления и скорости приводного ветра, измерителя флюоресценции фитопланктона и растворенного (желтого) органического вещества, измерителя (радиометра) радиационной температуры морской поверхности и измерителя спектральных яркости неба, яркости моря и облученности морской поверхности солнечным излучением. Третий (3) набор состоит из измерителя спектрального показателя ослабления света морской воды, измерителя флюоресценции хлорофилла фитопланктона и растворенного (желтого) органического вещества, измерителя концентрации хлорофилла и растворенного (желтого) органического вещества, измерителя концентрации каротиноидов, феофитина, углерода. Четвертый (18) набор состоит из датчиков измерения температуры воздуха, скорости и направления ветра, атмосферного давления, электропроводности воды, температуры воды в поверхностном слое, гидростатического давления, высоты, скорости, периода и направления морских волн. Пятый (19) набор состоит из устройств измерения составляющих вектора подводных течений, скорости распространения звука, температуры, относительной электропроводности, гидростатического давления, концентрации растворенного кислорода, показателя ионов водорода, пороговой чувствительности концентрации сульфидов на двенадцати горизонтах до глубины 250 м. Спутниковые средства измерений включают устройство (6) определения координат судна и устройство (8) определения координат луча сканирования водной поверхности искусственным спутником Земли. Показания подспутниковых средств измерений используют при корректировке спутниковых данных в устройстве (11) корректировки спутниковой информации и хранения океанографических данных. Технический результат: повышение информативности и достоверности при определении океанографических характеристик и выявлении их пространственного распределения. 2 н.п. ф-лы, 1 ил.

Изобретение относится к неконтактным океанографическим измерениям и может быть использовано для определения статистических характеристик морского волнения с борта движущегося судна. Способ измерения сверхмалой высоты полета самолета, преимущественно гидросамолета, над водной поверхностью и параметров морского волнения, основанный на регистрации физических величин, зависящих от электромагнитного поля, создаваемого установленной на самолете антенной, по которым судят о высоте полета самолета, о высоте морской волны, о длине морской волны в направлении полета и в месте, над которым пролетает самолет, в котором антенна для создания электромагнитного поля выполнена в виде пяти независимых антенн, установленных на корпусе самолета соответственно в центре тяжести самолета, в носовой и кормовой частях самолета, и в оконечных частях крыльев самолета. Техническим результатом является повышение достоверности и информативности измерения высоты морских волн с борта летательного аппарата для обеспечения посадки на морскую поверхность. 3 ил.
Изобретение относится к средствам освоения континентального шельфа. Морская плавучая платформа содержит подводный водоизмещающий модуль, поддерживающий надводный модуль посредством жестких опорных колонн со связующими элементами, и натяжные связи, закрепленные на донных якорях. Опорные колонны со связующими элементами выполнены отъемными от подводного модуля для возможности быстрого ухода платформы из опасного в ледовом отношении района и обеспечения возврата на покинутое место. Подводный модуль выполнен из отдельных герметичных понтонов, соединенных между собой жесткими связями с возможностью ограниченных взаимных перемещений. Опорные колонны надводного модуля снабжены механизмами соединения с понтонами подводного модуля для фиксации модулей между собой. На несущем корпусе надводного модуля по его периметру размещено гибкое ограждение для создания воздушной подушки, имеющее ресивер, установленное на бортовых кринолинах, прикрепленных к корпусу, надводный модуль содержит нагнетательный и движительный комплексы, имеющие главные двигатели с приводами и авиационные воздушные винты изменяемого шага в насадках. Повышается оперативность ухода платформы из опасного в ледовом отношении района и возврата на покинутое место.

Изобретение относится к области морской навигации и может быть использовано, в частности, для определения скорости судна. Согласно изобретению измеряют параметры сигналов спутников глобальной навигационной системы в моменты начала и конца пробега. Преобразуют эти параметры в координаты места судна в указанные моменты времени и определяют длину пробега. По полученной служебной информации определяют составы рабочих созвездий спутников в данные моменты времени. Выбирают группу общих для обоих созвездий спутников и фиксируют эту группу в качестве единого рабочего созвездия для всего времени выполнения пробега. Для всего времени выполнения пробега одновременно с приемом радиосигналов от космических аппаратов принимают радиосигналы от береговых станций, работающих в дифференциальном режиме, и вводят соответствующие поправки, при измерении радионавигационных параметров сигналов выполняют оценку ошибки, вызванную многолучевостью распространения радиосигналов космических аппаратов. Изобретение направлено на повышение точности определения длины пробега судна путем исключения систематических составляющих из общей погрешности измерения указанной длины. 1 ил.

Изобретение относится к области морской навигации и может быть использовано, в частности, для определения скорости судна. Предложенный способ определения истинной скорости судна по измерениям длины пробега судна на галсе по фиксированному созвездию космических аппаратов среднеорбитной спутниковой радионавигационной системы заключается в том, что осуществляют прием радиосигналов космических аппаратов, выделение из радиосигналов служебной информации, определение на основе служебной информации составов рабочих созвездий космических аппаратов системы для моментов начала и окончания пробега, измерение радионавигационных параметров сигналов космических аппаратов рабочих созвездий в указанные моменты начала и окончания пробега, преобразование измеренных параметров в координаты места судна на моменты начала и окончания пробега и определение длины пробега как расстояния между точками с полученными координатами, в котором после определения на основе служебной информации составов рабочих созвездий космических аппаратов системы для моментов начала и окончания пробега сравнивают составы этих созвездий, выбирая группу общих для обоих созвездий космических аппаратов и фиксируют выбранную группу в качестве единого рабочего созвездия для всего времени выполнения пробега. При этом для всего времени выполнения пробега одновременно с приемом радиосигналов от космических аппаратов дополнительно определяют и оценивают остаточные погрешности доплеровского радиолага на основном скоростном режиме, вычисляют апостериорные средние квадратические погрешности скорости по лагу, для компенсации крена и дифферента, вычисляют искомые горизонтальные составляющие вектора скорости. Данное изобретение направлено на расширение функциональных возможностей способа определения длины пробега судна на галсе по определениям места при одновременном уменьшении влиянии негативных факторов при определении истинной скорости судна.

Изобретение относится к измерительной технике и может быть использовано в системах спутниковой навигации подвижных объектов. Технический результат - расширение функциональных возможностей. Для этого выработка спутниковой системой навигационных параметров коррекции базируется на измерениях дальности от объекта до навигационных спутников в три близких (около 1 сек) момента времени с возможностью использования только одного спутника для коррекции автономных средств навигации подвижных объектов, в котором для упрощения приемного тракта передачу кодовых сообщений (цифровой информации) осуществляют на различных частотах по одному радиоканалу связи путем формирования синхроимпульса и разрядов кода логический «0» и логическая «1», при этом передают импульсы, соответствующие одному разряду, разделенные во времени. 2 ил.

Изобретение относится к автоматизированным системам регистрации и документирования. Судовая автоматизированная система регистрации данных телеметрического контроля содержит судовую ЭВМ обработки информации, соединенную своим входом-выходом с контроллерами сбора и преобразования данных, которые своими входами соединены с выходами датчика телеметрической информации, датчиками звуковой информации, РЛС, видеокамерой наружного обзора. Судовая ЭВМ обработки информации своим входом-выходом соединена с входом-выходом монитора и еще одним выходом соединена с входом контроллера автомата сброса контейнера с аппаратурой регистрации, который своим выходом соединен с входом автомата сброса контейнера с аппаратурой регистрации, который своими входами соединен с выходом датчика давления и датчика температуры. Автомат сброса контейнера с аппаратурой регистрации своим выходом соединен с механизмом сброса контейнера с аппаратурой регистрации, который своим вторым входом соединен с выходом устройства ручного сброса контейнера с аппаратурой регистрации, которое своим входом соединено с выходом кодового замка. Контейнер с аппаратурой регистрации соединен с еще одним входом-выходом судовой ЭВМ и который этим же входом-выходом соединен с входом-выходом блока регистрации данных на накопитель. Система содержит преобразователь навигационных параметров, который своими входами соединен с выходами навигационных датчиков измерения скорости, курса, координат. Преобразователь своим выходом соединен с входом блока регистрации данных на накопитель, преобразователь картографической информации, который своим входом соединен с выходом телевизионной камеры, установленной над рабочим полем автопрокладчика, а своим выходом соединен с входом блока регистрации данных на накопитель. Монитор своими входами соединен с выходами датчиков измерения глубины, углов крена и дифферента, и глубинометра. Входы автопрокладчика соединены с выходами навигационных датчиков измерения курса, скорости и координат. Достигается расширение функциональных возможностей систем аварийной сигнализации, повышение оперативности передачи сигналов оповещения и поиска контейнера, повышение объективности анализа обстановки. 2 з.п. ф-лы, 3 ил.

Изобретение относится к навигации, в частности предназначено для измерения скорости морских подвижных объектов

Изобретение относится к области геофизики и может быть использовано для прогнозирования землетрясений

Изобретение относится к области океанографии и может быть использовано для определения характеристик морских ветровых волн

Изобретение относится к судовым средствам измерения скорости, основанным на излучении электромагнитных волн и приеме отраженных волн от подстилающей поверхности (вода, суша, лед), преимущественно для судов ледового плавания

Изобретение относится к области геофизики и может быть использовано для прогнозирования землетрясений

Изобретение относится к области навигации, а более конкретно к измерению параметров волнения посредством устройств, представляющих собой радиотехническое неконтактные измерители

Изобретение относится к области навигационной измерительной техники и предназначено для измерения скорости подвижных объектов

Изобретение относится к комплексам для осуществления морской геофизической разведки

Изобретение относится к области гидрографии, в частности к способам и техническим средствам определения глубин акватории фазовым гидролокатором бокового обзора, и может быть использовано для выполнения съемки рельефа дна акватории

Изобретение относится к области картографического моделирования

Изобретение относится к способам и средствам воздействия на айсберги с целью предотвращения их столкновений со стационарными или плавающими добычными комплексами
Изобретение относится к области геофизики и может быть использовано для прогнозирования землетрясений
Изобретение относится к геофизике и может быть использовано для контроля сейсмических процессов в процессе поиска и разведки нефтяных и газовых подводных месторождений

Изобретение относится к области навигационного приборостроения и может найти применение в системах автоматической навигации высокоскоростных судов

Изобретение относится к области навигации, а более конкретно к способам определения местоположения измеренных глубин преимущественно посредством многолучевого эхолота

Изобретение относится к устройствам, предназначенным для океанографических и геологических исследований, ремонтных работ, установки и обслуживания подводного оборудования

Изобретение относится к судостроению, в частности к способам контроля мореходных качеств судов в условиях эксплуатации, и может быть использовано при создании экспертных систем безопасности мореплавания
Изобретение относится к способам автоматизированного обеспечения противодействия гололедным явлениям и может быть использовано для борьбы с гололедом на крупных дорожных магистралях

Изобретение относится к судовождению и может быть использовано в картографии, геодезии и при проведении работ, связанных с построением карт при исследованиях различных геофизических процессов
Изобретение относится к области судовождения и может быть использовано при разработке авторулевого, при проведении гидрографических работ, для повышения безопасности плавания танкеров

Изобретение относится к судостроению, касается технологии контроля мореходности судна и может использоваться при создании экспертных систем безопасности мореплавания

Изобретение относится к судостроению, а именно к понтонным переправам

Изобретение относится к сигнальным устройствам, преимущественно маячных аппаратов и железнодорожных светофоров

 


Наверх