Патенты автора Алексеев Павел Александрович (RU)

Изобретение относится к реактору-преобразователю. Ядерный реактор-преобразователь содержит корпус (2), отражатель (3), активную зону, блок электрогенерирующих элементов (7), капиллярно-пористую вставку (5) и блок коммутационных камер и коллекторов (1). Активная зона, образованная твэлами (6), размещена в корпусе (2). Отражатель (3) установлен вдоль наружной боковой поверхности корпуса (2) в районе твэлов (6). Боковая поверхность твэлов (6) покрыта капиллярно-пористой структурой. Капиллярно-пористая вставка (5) и блок электрогенерирующих элементов (7) расположены внутри корпуса (2). Капиллярно-пористая вставка (5) размещена в зазоре между смежными торцевыми частями активной зоны и блока электрогенерирующих элементов (7). Боковая и обращенная к активной зоне торцевая поверхности электрогенерирующих элементов (7) покрыты капиллярно-пористой структурой. В частных случаях выполнения устройства, во-первых, капиллярно-пористая вставка (5) выполнена в виде перфорированной перегородки, и, во-вторых, перфорированная перегородка выполнена в виде сотовой структуры с размером ячейки, по меньшей мере, соответствующим минимальному поперечному размеру электрогенерирующего элемента (7) и твэла (6). Техническим результатом является повышение КПД ядерного реактора-преобразователя и увеличение его запаса реактивности. 2 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к области металлургии, в частности к инварным сплавам и составам, характеризующимся значением коэффициента линейного теплового расширения (КЛТР), не превышающим 2×10-6 К-1 в рабочем диапазоне температур, и может быть использовано в приборостроении, радиоэлектронике, авиационной и ракетно-космической, лазерной и криогенной технике. Композитный материал с инварными свойствами содержит функциональный металл со средним значением КЛТР, не превышающим 13x10-5 К-1 в диапазоне температур 4.5-32 К или 3.22×10-5 К-1 в диапазоне температур 32-250 К, и соединение с отрицательным КЛТР, при этом в качестве соединения с отрицательным КЛТР используют валентно-нестабильное соединение на основе самария (ВНС), при этом количественное соотношение компонентов композита определяют из условия Тернера: (αƒVƒKƒ+αmVmKm)/(VƒKƒ+VmKm)=0, где: αm - КЛТР функционального металла, αƒ - КЛТР валентно-нестабильного соединения, Vm и Vƒ - объемные доли металла и ВНС соответственно; Km и Kƒ - объемные модули упругости металла и ВНС соответственно. Изобретение направлено на создание композитного материала с КЛТР, близким к нулю, в диапазоне температур до 250 К с сохранением в композите физических свойств, присущих металлической компоненте. 2 з.п. ф-лы, 2 ил., 2 табл.
Изобретение относится к химической промышленности, где используются процессы диссоциации твердого карбонатного сырья, продукты разложения которого применяются в металлургии, строительной индустрии, целлюлозно-бумажной и сахарной промышленности, в производстве удобрений для сельского хозяйства

Изобретение относится к области создания сверхнизких температур (<<1К), необходимых при разработке криогенной техники, проведения исследований в области физики низких температур

Изобретение относится к гидрометаллургическим способам переработки рудного сырья и может быть использовано, в частности, для переработки трудновскрываемых урановых, золотоносных, платиновых и иных руд в кучном, агитационном, чановом и подземном выщелачивании

Изобретение относится к области прикладной сверхпроводимости и может быть использовано при изготовлении сверхпроводников для сильно механически нагруженных сверхпроводящих обмоток, работающих в переменных режимах, например сверхпроводящих индуктивных накопителей энергии, дипольных и квадрупольных магнитов для ускорителей заряженных частиц

Изобретение относится к области прикладной сверхпроводимости и может быть использовано для изготовления сверхпроводников при сильно механически нагруженных сверхпроводящих обмоток (с напряжением проводника больше 100 МПа при работе), а также для сверхпроводящих обмоток и устройств, работающих в переменных режимах, например сверхпроводящих индуктивных накопителей энергии, дипольных и квадрупольных магнитов для ускорителей заряженных частиц

 


Наверх