Патенты автора Кирьянов Сергей Вениаминович (RU)

Изобретение относится к цветной металлургии, а именно к способу переработки титановых концентратов, полученных из редкометаллического сырья в рудно-термических печах, в частности к способу переработки пылевых отходов, образующихся при очистке газов рудно-термической печи. Способ включает двухстадийную очистку газов сначала в циклонах с возвратом уловленной пыли на процесс плавки, затем в металлотканевых фильтрах с получением пыли. Пыль после извлечения из металлотканевого фильтра выщелачивают раствором гидроксида натрия, при отношении пыли к раствору гидроксида натрия, равном 1: (3-4), при нагревании и постоянном перемешивании с получением пульпы. После пульпу фильтруют с отделением обогащенного кека. Затем обогащенный кек промывают водой и полученную пастообразную смесь направляют на гранулирование с получением гранул и дальнейшую переработку. Изобретение позволяет уменьшить вынос пыли из хлоратора, уменьшить отложения солей в конденсационной системе и тем самым повысить извлечение ценных компонентов из пылевых отходов. 3 з.п. ф-лы, 2 пр.

Изобретение может быть использовано в химической промышленности при обезвреживании пульпы гипохлорита кальция, образующейся в процессе очистки хлорсодержащих газов от хлора известковым молоком. Способ обезвреживания пульпы гипохлорита кальция включает вывод отработанной пульпы гипохлорита кальция из системы циркуляции в емкость, обработку раствором соляной кислоты. В качестве раствора соляной кислоты используют абгазную соляную кислоту с концентрацией 10-15 мас.%, полученную при обезвреживании отходящих газов процесса хлорирования титановой шихты в титановых хлораторах. Отработанную пульпу гипохлорита кальция перед обработкой абгазной соляной кислотой разделяют на осветленный гипохлоритный раствор и осадок. В осветленном гипохлоритном растворе определяют содержание гипохлорита кальция. Осветленный гипохлоритный раствор подают в герметичную емкость и при перемешивании постепенно добавляют абгазную соляную кислоту. При этом количество хлористого водорода в добавляемой абгазной соляной кислоте поддерживают в 5-25% избытке от стехиометрически необходимого к содержанию гипохлорита кальция в осветленном гипохлоритном растворе. Затем выделившийся газообразный хлор компримируют и возвращают в производство титана для хлорирования титансодержащей шихты. Осадок утилизируют в очистных сооружениях. Изобретение позволяет снизить содержание активного хлора в промышленных сточных водах, уменьшить загрязнение окружающей среды, получить в процессе обезвреживания газообразный хлор. 2 з.п. ф-лы, 4 пр.
Изобретение относится к металлургии титана и может быть использовано для получения искусственного рутила из титансодержащего сырья, в частности из ильменитовых концентратов. Способ включает восстановительный обжиг ильменитовых концентратов в смеси с углеродсодержащим восстановителем. Охлаждение восстановленного продукта до температуры 80°С в ванне с водой при непрерывном перемешивании с получением пульпы при соотношении Т:Ж=1:5. После пульпу направляют на магнитную сепарацию с выделением магнитной и немагнитной фракций. Магнитную фракцию выщелачивают солянокислым раствором хлорного железа, полученным при обезвреживании хлорсодержащих отходящих газов магниевого производства с концентрацией 250-570 г/дм3, при нагревании и постоянном перемешивании. После отделяют выщелоченный концентрат от раствора хлористого железа, затем его промывают, сушат с получением искусственного рутила. Раствор хлористого железа возвращают на обезвреживание хлорсодержащих отходящих газов магниевого производства. Изобретение позволяет уменьшить стоимость процесса производства искусственного рутила из ильменитовых концентратов, повысить его производительность и повысить степень извлечения железа при одновременном снижении степени извлечения титана. 5 з.п. ф-лы.

Изобретение относится к цветной металлургии. Отработанный раствор серной кислоты выводят из системы циркуляции и подают в емкость. Производят перемешивание с одновременным обесхлориванием посредством барботажа сжатым воздухом в течение 15-20 минут при объемном расходе сжатого воздуха 80м3/час на 1 м3 отработанного раствора. Затем однородную кислую суспензию разделяют центрифугированием или фильтрацией на очищенный раствор серной кислоты и осадок. Очищенный раствор подают в емкость для очищенной серной кислоты и смешивают с олеумом при соотношении, равном 1:(0,54-0,96). Полученную концентрированную серную кислоту концентрацией не менее 97 мас.% подают в систему циркуляции. Осадок утилизируют в очистных сооружениях. Обеспечивается исключение сброса отработанного раствора серной кислоты, содержащей растворенный хлор, в сточные воды. 2 з.п. ф-лы, 1 ил., 4 пр.

Изобретение может быть использовано в химической промышленности при обезвреживании гипохлоритных пульп, образующихся в процессе очистки отходящих хлорсодержащих газов от хлора известковым молоком. Способ обезвреживания пульпы гипохлорита кальция включает термическое разложение гипохлорита кальция при перемешивании острым паром в присутствии нихромового катализатора, обработанного в баке травления раствором соляной кислоты. В отработанном растворе соляной кислоты, образующемся при обработке нихромового катализатора после его использования в процессе термического разложения гипохлорита кальция, определяют содержание активного хлора. При перемешивании отработанного раствора соляной кислоты постепенно добавляют раствор тиосульфата натрия. Количество раствора тиосульфата натрия в отработанном растворе соляной кислоты поддерживают в 5-15-кратном избытке от стехиометрически необходимого. Обезвреженный раствор сливают в сточные воды канализации. Изобретение позволяет снизить содержание токсичных веществ и активного хлора в сточных водах. 4 з.п. ф-лы, 1 пр.

Изобретение относится к cпособу получения легированного губчатого титана, содержащего ванадий. Способ включает приготовление смеси очищенного тетрахлорида титана и очищенного тетрахлорида ванадия. Очищенный тетрахлорид ванадия получают хлорированием очищенного окситрихлорида ванадия четыреххлористым углеродом. Соотношение смеси очищенного тетрахлорида титана и очищенного тетрахлорида ванадия поддерживают в пределах 1:(0,7-1,0). При этом смесь подают на восстановление сначала в течение одного часа при скорости подачи смеси не более 100 кг/час и затем при скорости подачи не более 150 кг/час. В процессе подачи смеси поддерживают постоянную температуру и постоянное избыточное давление аргона. При восстановлении периодически сливают хлорид магния. Изобретение позволяет получить легированный губчатый титан однородный по составу, а также с заданным содержанием легирующего металла. 11 з.п. ф-лы.
Группа изобретений относится к металлургии титана. Титансодержащая шихта для получения тетрахлорида титана содержит титановый шлак, углеродсодержащий материал, хлорид натрия, измельченную формованную смесь из угольных отходов, полученных с фильтров по очистке газов при сушке и транспортировке углеродсодержащего материала, пылевых отходов, полученных с фильтров тонкой очистки газов производства титанового шлака, и связующего. Способ приготовления шихты включает раздельное дробление титанового шлака, хлорида натрия и углеродсодержащего материала и их перемешивание. Готовят измельченную формованную смесь из угольных отходов, полученных с фильтров по очистке газов при сушке и транспортировке углеродсодержащего материала, пылевых отходов, полученных с фильтров тонкой очисти газов производства титанового шлака, и связующего, при этом загружают в емкость упомянутые пылевые отходы, затем на их поверхность одновременно подают упомянутые угольные отходы и жидкое связующее, перемешивают с получением пастообразной смеси, которую формуют, сушат и измельчают, полученную измельченную формованную смесь смешивают с титановым шлаком и с хлоридом натрия, загружают углеродсодержащий материал и перемешивают с получением титансодержащей шихты. 2 н. и 10 з.п. ф-лы, 5 пр.
Изобретение относится к металлургии, а именно к получению металлического титана из титановых шлаков, в частности к подготовке шихты для выплавки титановых шлаков в рудно-термической печи. Способ включает дробление углеродистого восстановителя, дозирование и смешивание его с ильменитовым концентратом с получением шихты, транспортировку и загрузку шихты в бункеры рудно-термической печи. После дробления углеродистый восстановитель сушат до массового содержания остаточной влаги не более 5 мас %, извлекают угольные отходы с фильтров при очистке газов с процесса подготовки углеродистого восстановителя, загружают угольные отходы в смеситель, куда подают жидкое связующее при массовом соотношении Т:Ж, равном (3-7):1, перемешивают с получением пастообразной массы, которую формуют в виде брикетов и сушат, брикетированные угольные отходы смешивают с углеродистым восстановителем при массовом соотношении брикетированные угольные отходы: углеродистый восстановитель, равном 1:(15-25), полученную смесь смешивают с ильменитовым концентратом для получения шихты для выплавки титановых шлаков. Изобретение позволяет снизить затраты на сырье и материалы, снизить себестоимость титановых шлаков и уменьшить выбросы в окружающую среду отходов производства. 5 з.п. ф-лы, 3 пр.

Изобретение относятся к области очистки промышленных и ливневых сточных вод титаномагниевого производства. Установка для очистки промышленных и ливневых сточных вод включает камеры, соединенные между собой в следующей последовательности: нефтеловушка 2 соединена с камерой обеззараживания ультрафиолетовым облучением 4 трубопроводом 3, проходящим через камеру обеззараживания и снабженным устройством ультрафиолетового облучения 5 с длиной волны 250-270 нм, камера обеззараживания связана с камерой измерения расхода сточных вод 6 трубопроводом 3, проходящим через камеру измерения расхода и снабженным акустическим расходомером 7, камера измерения расхода соединена трубопроводом с фильтрационной камерой 8 с сорбционным наполнителем 9 типа МИУ-С2, а фильтрационная камера с сорбционным наполнителем связана трубопроводом со сборным коллектором 10 для очищенных сточных вод, а насосная станция 11 для перекачки очищенных сточных вод соединена трубопроводом с одной стороны со сборным коллектором для очищенных сточных вод, а с другой - с сетью оборотного водоснабжения 12. Скорость пропускания сточных вод по трубопроводу через камеру обеззараживания ультрафиолетовым облучением, камеру измерения расхода сточных вод и фильтрационную камеру с сорбционным наполнителем равна не более 24 м3/ч. Установка позволяет повысить степень очистки сточных вод от нефтепродуктов (до 0,05 мг/л), взвешенных веществ (до 7,55 мг/л), от примесей цветных и редких металлов, улучшить качество оборотной воды, используемой при охлаждении аппаратов и оборудования титаномагниевого производства. 2 з.п. ф-лы, 1 ил.

Изобретение может быть использовано в химической области и в области цветной металлургии. Способ очистки отходящих газов титано-магниевого производства включает обработку отходящих газов смесью щелочного реагента с водным раствором карбамида. Отходящие газы подвергают двухступенчатой очистке. На второй ступени отходящие газы противоточно обрабатывают смесью водного раствора гидроксида натрия с водным раствором карбамида, при этом водный раствор карбамида вводят в водный раствор гидроксида натрия в количестве, выше стехиометрии на 20-60%. Полученную смесь циркулируют в циркуляционном контуре бак-насос-скруббер до остаточной концентрации гидроксида натрия, равной 20-40 г/дм3, и удаляют отработанный раствор, насыщенный по хлориду натрия из циркуляционного контура. Изобретение позволяет уменьшить затраты в процессе очистки отходящих газов титано-магниевого производства, снизить содержание гипохлорита натрия и активного хлора, повысить срок службы оборудования за счет исключения абразивного износа. 2 з.п. ф-лы, 2 пр.

Изобретение относится к составу и технологии производства слюдокристаллического материала на основе фторфлогопита. Слюдокристаллический материал на основе фторфлогопита включает оксиды кремния, алюминия, магния, калия и фтор, при этом он содержит указанные ингредиенты при следующем соотношении, масс.%: оксид кремния - 39,0-43,0, оксид алюминия - 9,0-12,0, оксид магния - 27,1-30,0, оксид калия - 7,1-9,0 и фтор - 8,0-12,0. Способ производства слюдокристаллического материала на основе фторфлогопита включает приготовление шихты из следующих компонентов, масс.%: кварцевый песок - 33,5-34,5, глинозем - 9,5-10,5, периклазовый порошок - 29,5-30,5, кремнефторид калия - 25,5-26,5. Брикеты плавят при температуре 1600-1800°C в течение 1,5-3,5 часов. Техническим результатом изобретения является повышение прочности и повышение срока службы футеровочного материала. 2 н. и 2 з.п. ф-лы, 1 пр.
Изобретение может быть использовано для очистки сточных вод титано-магниевого производства. Сточные воды смешивают и отделяют твердые взвеси в песколовке. Полученные стоки нейтрализуют в две стадии известковым молоком при концентрации оксида кальция в известковом молоке, равной не менее 100 г/дм3. На первой стадии известковое молоко вводят в движущийся поток стоков при объемном расходе, равном 5-20 м3/час, затем смесь перемешивают механической мешалкой и барботером в течение 1,0-1,5 часа. На второй стадии нейтрализацию проводят в отстойнике при объемном расходе известкового молока, равном 0,1-5,0 м3/час. После нейтрализации стоки обрабатывают водным раствором флокулянта Праестол при скорости подачи, равной 2,2-6 м3/час, и при соотношении флокулянт:стоки, равном 1:(95-110). Взвеси направляют в отстойник, разделяют на очищенные стоки и шлам. Шлам со стадии отстаивания смешивают со шламом со стадии нейтрализации и со шламом со стадии обработки флокулянтом Праестол, смесь перемешивают в течение 1,2-1,5 часа и обрабатывают флокулянтом Праестол в виде водного раствора при массовой концентрации флокулянта, равной 0,5-0,8 масс.%, и при соотношении шлам:флокулянт Праестол, равном (10-20):1. Полученную смесь из шлама разделяют центрифугированием на фильтрат и твердый осадок, который применяют в качестве защитного материала на полигонах твердых промышленных и бытовых отходов, отвалов, карьеров. 6 з.п. ф-лы, 1 пр.
Изобретение относится к цветной металлургии, а именно к способам обезвреживания отходящих газов, образующихся при производстве титана путем хлорирования титансодержащего сырья в расплавном хлораторе и к способам утилизации отходов, образующихся в процессе обезвреживания отходящих газов
Изобретение относится к цветной металлургии, в частности к способу производства магния и хлора, получаемого из оксидно-хлоридного сырья, например серпентинита, брусита, магнезита, шламов магниевого производства

Изобретение относится к цветной металлургии, а именно к производству магния, в частности к очистке и обезвреживанию отходящих газов от хлора и хлорида водорода, получаемых в процессе электролитического получения магния
Изобретение относится к цветной металлургии, а именно к способу подготовки хлормагниевого сырья методом обезвоживания к процессу электролитического получения магния и хлора

Изобретение относится к цветной металлургии, а именно к способу получения магния и хлора и технологической линии для его осуществления

Изобретение относится к цветной металлургии, в частности к устройствам для подготовки карналлитового сырья к процессу электролитического получения магния

Изобретение относится к способам упрочнения и модификации поверхности и может использоваться для повышения стойкости деталей из титановых сплавов, работающих в коррозионно-активных средах с наличием абразивных частиц и высоких скоростей потока агрессивного раствора
Изобретение относится к цветной металлургии, в частности к способам получения гранул магния и его сплавов из шламов или из литейных отходов производства магния или его сплавов
Изобретение относится к цветной металлургии, а именно к подготовке хлормагниевого сырья для электролиза магния
Изобретение относится к способам обработки воды, промышленных и бытовых сточных вод, в частности к способам очистки сточных вод титаномагниевого производства
Изобретение относится к неорганической химии, в частности к получению соединений титана - титанатов щелочноземельных металлов, которые могут быть использованы при изготовлении высокочастотных керамических конденсаторов и терморезисторов в электронной промышленности

Изобретение относится к цветной металлургии, в частности к очистке отходящих газов процессов получения титана и магния от хлора и хлорида водорода

Изобретение относится к цветной металлургии, в частности к производству магния электролизом расплавленных солей, а именно к переработке солевых отходов, образующихся в процессе подготовки хлормагниевого сырья для получения магния электролизом
Изобретение относится к области неорганической химии, в частности к производству дисперсного диоксида титана парофазным гидролизом тетрахлорида титана

Изобретение относится к цветной металлургии, в частности к производству магния электролизом расплавленных солей, а именно к переработке солевых отходов, образующихся в процессе подготовки хлормагниевого сырья для получения магния электролизом
Изобретение относится к цветной металлургии, в частности хлорной металлургии, и может быть использовано при переработке растворов хлорида кальция, образующихся на газоочистных сооружениях при утилизации отходящих газов титано-магниевого производства

Изобретение относится к неорганической химии и может быть использовано при получении чистого и мелкодисперсного карбоната кальция
Изобретение относится к цветной металлургии, а именно к обезвоживанию хлормагниевого сырья (карналлита) для электролитического производства магния, в частности к переработке пылевых отходов, уловленных в циклонах и газоходах

 


Наверх