Патенты автора Хора Александр Николаевич (RU)

Изобретение относится к области авиационной и ракетной техники и может быть использовано при изготовлении ракет класса «воздух-воздух». Техническим результатом изобретения является защита пеленгующей антенны системы «антенна-обтекатель» от перегрева при тепловом воздействии набегающего потока из-за возрастания скорости ракеты и времени ее полета и исключение отказа пеленгующей антенны. Технический результат достигается тем, что предложена пеленгационная система «антенна-обтекатель» головки самонаведения, включающая керамическую оболочку, соединенную эластичным клеем с шпангоутом, состоящим из переходника, выполненного из металла, согласованного по температурному коэффициенту линейного расширения (ТКЛР) с материалом оболочки, обтекатель выполнен в виде равнотолщинной оболочки из беспористой керамики с волновой стенкой, равной: где - длина волны на средней частоте, - диапазон пеленгующей антенны, - диэлектрическая проницаемость материала стенки оболочки, - средний угол падения электромагнитной волны на оболочку при повороте пеленгующей антенны на угол, соответствующий максимальной угловой ошибке, с радиусом закругления носовой части, равным: , и осевой толщиной носовой части, равной: , для средней частоты заданного частотного диапазона пеленгующей антенны, имеющей доводочные проточки на внутреннем контуре, причем положение и величина доводочных проточек и осевая толщина уточняются и при необходимости дорабатываются по результатам измерений на радиотехническом стенде. 2 ил.

Изобретение относится к области авиационной и ракетной техники и преимущественно может быть использовано при изготовлении антенных обтекателей, в основном, высокоскоростных ракет класса «поверхность - воздух». Сущность: предложен антенный обтекатель для скоростных ракет, содержащий керамическую оболочку, соединенную внутренней поверхностью эластичным адгезивом с металлическим переходником. К торцу переходника присоединен жестко или выполнен с ним за одно целое стыковой кольцеобразный элемент. Наружная поверхность стыкового кольцеобразного элемента выполнена заподлицо с наружной поверхностью оболочки у ее торца, а внутренняя выполнена заподлицо с внутренней поверхностью переходника или выступает относительно нее внутрь оболочки на расчетную величину. Длина клеевого соединения соизмерима с расчетной при максимальном силовом воздействии на обтекатель или превышает расчетную в 1,5-2,0 раза. Между торцами оболочки и стыкового элемента введен равнотолщинный дистанционный слой из эластичного адгезива или эластичного адгезива с волокнистым наполнителем с толщиной, соизмеримой или превышающей среднюю величину оптимального диапазона толщины силового крепящего слоя адгезива. Жесткость на радиальное обжатие переходника составляет 0,5-2,0 от радиальной жесткости области оболочки, примыкающей к переходнику. Толщина дистанционного слоя адгезива соизмерима или превышает не более чем в 1,5 раза среднюю величину оптимального диапазона толщины силового крепящего слоя адгезива по прочности и технологичности изготовления обтекателя. Средняя часть переходника выполнена сплошной или с продольными сквозными прорезями, при этом толщина его носовой части соизмерима или превышает, или снижена по сравнению со средней частью. Технический результат заключается в повышении температурных и силовых эксплуатационных параметров обтекателей ракет. Данное изобретение позволяет упростить технологию создания обтекателя ракеты и обеспечить создание надежных конструкций, работоспособных при коротких и длинных режимах эксплуатации современных ракет. 1 ил.

Изобретение относится к области авиационной и ракетной техники и может быть использовано при изготовлении антенных обтекателей скоростных ракет различных классов. Предложен обтекатель, включающий металлический переходник, соединенный эластичным компаундом с внутренней поверхностью оболочки, с толщиной стенки в зоне соединения, большей, чем в радиопрозрачной части оболочки, выполненный из материала, согласованного по температурному коэффициенту линейного расширения в заданном интервале температур с материалом оболочки, и расположенный на наружной поверхности хвостовой части переходника, выступающей за торец оболочки, крепежный кольцевой или в виде равномерно расположенных по периметру секторов бурт, в полости торцевой части соединения оболочки с переходником введена эластичная обечайка, соотношение толщин стенок переходника к оболочке в области их соединения составляет 0,1-0,3, согласно изобретению минимальная допускаемая толщина эластичного компаунда, соединяющего оболочку с переходником, составляет не менее 0,2 мм, а максимальная превышает минимальную в 3-5 раз, кроме этого, эластичная обечайка, выполненная из эластичного компаунда или термостойкой резины, расположена в носовой части полости или на всей ее длине, при этом переходник выполнен сплошным или со сквозными прорезями от эластичной обечайки до его сплошной носовой части, а к торцу оболочки присоединен через слой эластичного компаунда металлический или из композиционного материала опорный элемент, при этом переходник связан со стыковым шпангоутом обтекателя с помощью штифтового или байонетного соединения или со стыковым шпангоутом второго отсека ракеты с помощью байонетного или клинового соединения, или кольцевой бурт переходника выполнен в виде его стыкового фланца в торце оболочки обтекателя. Технический результат - обеспечение унификации конструкции обтекателя для ракет разных классов, повышение несущей способности и надежности обтекателя при расширении температурного диапазона эксплуатации и вида эксплуатационных воздействий. 3 ил.

Изобретение относится к области полимерных материалов и может быть использовано при склеивании элементов конструкций из металла и керамики, преимущественно для соединения керамической оболочки ракетного антенного обтекателя с переходником или переходными элементами - шпангоутом к металлическому корпусу ракеты. Применяют полисилоксановые герметики холодного отверждения типа Виксинт в качестве конструкционных клеев в керамических ракетных обтекателях при внешнем расположении керамической оболочки обтекателя относительно переходника. Геометрические и физико-механические параметры соединения оболочки и переходника выбираются из условия в соответствии с указанным уравнением. Изобретение позволяет обеспечить теплопрочностные и деформационные характеристики используемых герметиков с учетом сохранения радиотехнических требований к обтекателям ракет разных классов. 1 табл.

Изобретение относится к области авиационной и ракетной техники и может быть использовано при изготовлении антенных обтекателей высокоскоростных ракет класса «воздух-поверхность». Техническим результатом является обеспечение заданных радиотехнических характеристик в сверхширокополосном диапазоне, повышение несущей способности и улучшение герметичности обтекателя при повышенных тепловых и силовых нагрузках. Широкополосный антенный обтекатель включает выполненные из диэлектрических материалов и соединенные между собой однослойную конусообразную оболочку, носок и промежуточный конусообразный элемент, расположенный изнутри в зоне стыка конусообразной оболочки и носка, с нанесенным на внутреннюю и наружную поверхности обтекателя лакокрасочным покрытием, металлическое кольцо, жестко скрепленное с конусообразной оболочкой. Оболочка выполнена из стеклопластика на основе кварцевой ткани и фенолформальдегидного связующего, в поровое пространство которого введен кремнийорганический полимер, на расстоянии, равном не менее 0,4 длины обтекателя от вершины носка, толщина стенки оболочки составляет не более 2,0 мм и плавно увеличивается к ее торцу не более чем в 5 раз, на наружную поверхность оболочки нанесена термостойкая шпатлевка на кремнийорганической основе. 3 ил.

Изобретение относится к области авиационной и ракетной техники и предназначено для использования в конструкциях антенных обтекателей для низкоскоростных ракет класса «воздух-поверхность» или «поверхность-поверхность». Антенный обтекатель изготавливается из стеклопластика на основе кварцевой ткани с разнотолщинной, радиотехнически тонкой стенкой, при этом толщина стенки (δ) в средней части оболочки на расстоянии от 15 до 50% длины от носка составляет 1δ, в хвостовой части оболочки составляет 2,5δ, в носовой части оболочки составляет 1,4δ, с плавным переходом между ними, кроме этого, оболочка соединена внутренней поверхностью и торцом со шпангоутом из алюмомагниевого сплава эластичным клеем-герметиком. При этом в средней части склеиваемой поверхности полки шпангоута выполнена кольцевая проточка шириной не менее 65% длины склеиваемой поверхности и глубиной не менее 0,2 мм. Оболочка выполнена методом пропитки под давлением с монолитной, беспористой матрицей, позволяющей получать обтекатель без радиотехнической доводки и без влагозащитного покрытия, с покрытием наружной поверхности оболочки антенного обтекателя только декоративной эмалью. Технический результат – создание конструкции антенного обтекателя с заданными радиотехническими характеристиками в широком диапазоне электромагнитных волн, обеспечивающего герметичность и теплопрочность изделия. 1 ил.

Изобретение относится к области авиационной и ракетной техники, преимущественно к конструкциям антенных обтекателей с радиопрозрачными оболочками для ракет класса «воздух-воздух» и «воздух-земля». Задачей изобретения является создание антенного обтекателя с многоконтурной поверхностью с максимальной унифицированностью, обеспечивающего возможность применения разных типов головок самонаведения в составе антенны и обтекателя, как в узком, так и в широком диапазоне длин волн, работоспособного при высоких теплосиловых воздействиях. Антенный обтекатель, включающий однослойную конусообразную оболочку и эрозионностойкий носок, выполненные из диэлектрического материала, связанные между собой клеевым соединением, металлическое кольцо, жестко скрепленное с конусообразной оболочкой, отличающийся тем, что оболочка и носок изготовлены из термостойких пористых стеклопластиков с диэлектрической проницаемостью 3,2÷4,2, носок соединен с оболочкой встык с нахлесткой, образуя в сечении вдоль оси обтекателя зетобразный профиль, с сохранением электрической толщины стенки оболочки резонансно-кратной полуволне в области соединения, в качестве клея использован высокотермостойкий жесткий адгезив на основе кремнийорганического связующего, а на наружную и внутреннюю поверхности оболочки нанесено влагозащитное покрытие. Антенный обтекатель, включающий однослойную конусообразную оболочку и эрозионностойкий носок, выполненные из диэлектрического материала, связанные между собой клеевым соединением, металлическое кольцо, жестко скрепленное с конусообразной оболочкой, отличающийся тем, что оболочка и носок изготовлены из термостойких пористых стеклопластиков с диэлектрической проницаемостью 3,2÷4,2, носок соединен с оболочкой встык, в области соединения изнутри установлена накладка, выполненная из аналогичного с носком или оболочкой материала и склеенная по соприкасающимися поверхностям клеем, толщина стенки накладки составляет (0,03÷0,06)⋅λ, высота 1,5⋅λ, а стенка оболочки обтекателя в его носовой части на расстоянии не менее одной трети высоты от носка равнотолщинна и составляет не более 0,1⋅λ, где λ - длина волны для верхней частоты трехсантиметрового рабочего диапазона с учетом диэлектрической проницаемости материала оболочки при среднем угле падения волны на поверхность обтекателя, кроме того, на расстоянии не менее одной трети высоты от носка толщина стенки оболочки плавно увеличивается в 2÷3,5 раза в радиотехнической зоне, возрастая до 5,5 раз в зоне крепления оболочки с металлическим кольцом, в качестве клея использован высокотермостойкий жесткий адгезив на основе кремнийорганического связующего, а на наружную и внутреннюю поверхности оболочки нанесено влагозащитное покрытие. Наземными и летными испытаниями доказана работоспособность комплекса с вариантами антенных обтекателей с оболочками, собранными в единую конструкцию элементов поверхностей различной кривизны, причем каждый из них имеет электрическую толщину стенки, оптимальную по радиотехническим характеристикам для заданного диапазона длин волн, а электрическая толщина стенки в зависимости от длины волны и ширины диапазона может быть, как равнотолщинной, кратной полуволне, так и неравномерной тонкостенной с минимальными значениями толщины, определяемыми комплексом эксплуатационных нагрузок. 2 н.п. ф-лы, 12 ил.

Изобретение относится к области авиационной и ракетной техники и преимущественно может быть использовано при изготовлении керамических антенных обтекателей высокоскоростных ракет класса «поверхность - воздух». Обтекатель содержит керамическую оболочку, металлический переходник, соединенный эластичным адгезивом с внутренней поверхностью оболочки. К торцу переходника жестко присоединен или выполнен за одно целое с ним смещенный к носку оболочки на величину не менее толщины оболочки у ее торца компенсатор жесткости в виде кольцевой обечайки, выступающей за торец оболочки, и толщиной стенки не менее 1/3 толщины стенки переходника у его торца, при этом выступающая часть обечайки выполнена с крепежным буртом в виде равномерно расположенных по его периметру секторов, наружный диаметр которого соизмерим с наружным диаметром переходника у его торца, кроме этого уточнение размеров компенсатора жесткости проводят расчетным путем с допущением пластичности в наиболее нагруженной его области. Техническим результатом является повышение температурных и силовых эксплуатационных параметров керамических обтекателей ракет и увеличение их несущей способности. 1 ил.

Изобретение относится к антенно-фидерным устройствам, преимущественно к широкополосным системам «антенна-обтекатель». Широкополосная система «антенна-обтекатель» содержит пеленгующую антенну и обтекатель со стенкой из диэлектрического материала, снабженный узлом крепления к летательному аппарату. При этом обтекатель выполнен в виде цилиндра с полусферической вершиной и имеет толщину стенки в зоне перехода от цилиндра к полусферической вершине, определяемую по формуле где с - скорость света, f - частота измерений, ε - диэлектрическая проницаемость материала стенки, при этом толщина стенки полусферической вершины обтекателя равномерно увеличивается от зоны перехода к оси обтекателя от h до 1,3⋅h, а толщина стенки цилиндрической части обтекателя равномерно увеличивается к основанию от h до 2,6⋅h. Технический результат изобретения – улучшение радиотехнических характеристик по сравнению с известными конструкциями обтекателей. 2 ил.

Изобретение относится к области авиационной и ракетной техники и преимущественно может быть использовано при изготовлении антенных обтекателей скоростных ракет класса "воздух-воздух" или "воздух-поверхность". Техническим результатом является повышение температурных и силовых эксплуатационных параметров обтекателей ракет разных классов. Сущность изобретения заключается в том, что предложен обтекатель, включающий керамическую оболочку, соединенную эластичным адгезивом с металлическим шпангоутом, состоящим из переходника из инварного сплава и стыкового элемента, соединенных между собой с помощью буртов и штифтов. На наружной поверхности переходника в области его соединения с торцевой зоной керамической оболочки выполнена кольцевая проточка, перпендикулярно которой в части соединения переходника с оболочкой выполнены равномерно расположенные по окружности прорези. В бурте переходника выполнены дискретно расположенные опорный элемент, прилегающий к бурту стыкового элемента, и крепежный элемент в области штифтов. В опорном элементе выполнены осевые пазы, размещенные в шахматном порядке относительно прорезей переходника, а крепежном в элементе выполнена дополнительная кольцевая проточка. 1 ил.

Изобретение относится к области авиационной и ракетной техники и преимущественно может быть использовано при изготовлении антенных обтекателей высокоскоростных ракет различных классов. Обтекатель включает керамическую оболочку, внутренняя поверхность которой соединена слоем эластичного термостойкого адгезива с металлическим шпангоутом, на наружной поверхности которого выполнены кольцевые или винтовые проточки, расположенные на всей длине соединения или ее части. В проточки введен термокомпенсатор, выполненный в виде полости или пор в полом или пористом элементе. Объем полости или пор устанавливается с учетом вытеснения эластичного адгезива при нагреве соединения, при этом соотношение минимальной толщины слоя адгезива, превышающего разницу температурных радиальных расширений оболочки и шпангоута в соединении, к шагу проточек устанавливается не более 0,1. Технический результат заключается в повышении эксплуатационных температурных параметров обтекателя, улучшении технологии изготовления конструкции обтекателя и повышении надежности термокомпенсационной способности шпангоута. 2 ил.
Изобретение относится к области авиационной и ракетной техники и преимущественно может быть использовано при изготовлении антенных обтекателей высокоскоростных ракет класса «поверхность - поверхность». Обтекатель включает керамическую оболочку, соединенную с переходником эластичным адгезивом, стыковой элемент, опорное кольцо. Керамическая оболочка выполнена конической с малым удлинением, не превышающим полуторократное. Смежные поверхности торцев керамической оболочки и опорного кольца выполнены коническими, образующие которых перпендикулярны образующей наружной поверхности керамической оболочки. Начало зоны соединения адгезивом керамической оболочки с переходником удалено от торца керамической оболочки на величину 1,5-2,0 толщины керамической оболочки в ее торцевой части. Между торцом керамической оболочки и началом зоны соединения керамической оболочки с переходником выполнена воздушная полость за счет уменьшения толщины стенки переходника в 1,5-2,0 раза. Толщина слоя эластичного адгезива между торцом керамической оболочки и опорным кольцом составляет 0,7-1,5 толщины слоя адгезива в зоне соединения керамической оболочки с переходником. Технический результат заключается в повышении температурных и силовых эксплуатационных параметров и надежности обтекателей ракет. 1 ил.

Изобретение относится к испытательной технике и может быть использовано для оценки и исследования прочности керамических оболочек при наземных испытаниях в составе обтекателей. Сущность: осуществляют приложение статической нагрузки с помощью камеры из эластичного материала, помещенной внутрь испытуемой оболочки, к наиболее напряженной зоне оболочки, определяемой заданными условиями нагружения, и вычисление напряженного объема материала этой зоны расчетными методами. В соответствии с заданными режимами наземных испытаний керамических оболочек в составе обтекателей вычисляют напряженный объем материала оболочки при наземных испытаниях в составе обтекателя с использованием уравнений общей теории оболочек вращения или приближенными численными методами. С учетом вычисленных напряженных объемов определяют величину растягивающих напряжений, эквивалентную растягивающим напряжениям в напряженном объеме материала оболочки при нагружении обтекателя эксплуатационной нагрузкой, и по ней определяют предельно допустимое давление при заданной вероятности неразрушения керамической оболочки. Технический результат: повышение достоверности соответствия результатов испытаний по оценке прочности керамических оболочек при нагружении внутренним давлением на промежуточных операциях изготовления обтекателей результатам наземных испытаний керамических оболочек в составе обтекателей за счет использования обоснованного расчетного метода для установления уровня прикладываемого давления, учитывающего условия нагружения обтекателей эксплуатационными нагрузками и, следовательно, на повышение эффективности результатов испытаний и, таким образом, на повышение точности оценки их несущей способности.

Изобретение относится к испытательной технике и может быть использовано для контроля и исследования прочности керамических оболочек типа тел вращения. Сущность: осуществляют приложение статической нагрузки с помощью камеры из эластичного материала, помещенной внутрь испытуемой оболочки и соединенной с источником давления. Статическую нагрузку прикладывают к наиболее напряженной зоне оболочки, определяемой заданными условиями нагружения, напряженный объем материала которой определяют с использованием уравнений общей теории оболочек вращения или приближенными численными методами. Определяют среднее значение прочности материала оболочки при растяжении в напряженном объеме материала оболочки и величину прикладываемого давления рассчитывают по формулам. Технический результат: повышение достоверности контроля прочности керамических оболочек в процессе производства и при проведении опытно-конструкторских работ.

Изобретение относится к области авиационной и ракетной техники и может быть использовано при изготовлении головных обтекателей высокоскоростных ракет класса "воздух-воздух" или "воздух-поверхность"

Изобретение относится к области ракетной техники

Изобретение относится к области авиационной и ракетной техники, преимущественно к конструкциям антенных обтекателей с керамическими радиопрозрачными оболочками для высокоскоростных ракет класса "земля - воздух"

 


Наверх