Патенты автора Трушин Владимир Николаевич (RU)

Изобретение относится к рентгеновской оптике и предназначено для управления соответствующей заданному условию сходимости рентгеновского пучка. Управление осуществляется кривизной рабочей поверхности монокристаллической пластины в составе дифракционного блока, образованного указанной пластиной, выполняющей функцию дифракционного элемента, на котором происходит дифракция рентгеновского пучка по Брэггу, и приклеенной к пластине пьезоэлемента. Пластина имеет напыленные на обе ее противоположные поверхности плоские электроды, для изгиба указанной монокристаллической пластины вместе с пластиной пьезоэлемента при воздействии на последнюю электрического поля. Техническим результатом является возможность изгиба рабочей поверхности монокристаллической пластины за счет дополнительного изменения кривизны рабочей поверхности монокристаллической пластины путем изменения величины напряженности электрического поля, воздействующего на пластину пьезоэлемента, распределенной вдоль ее поверхности, и обеспечивающего одновременный изгиб приклеенных друг к другу и консольно закрепленных монокристаллической пластины и пластины пьезоэлемента. 3 з.п. ф-лы, 4 ил., 3 пр.

Изобретение предназначено для управления сходимостью рентгеновского пучка. Осуществляется управление сходимостью рентгеновского пучка, получаемого в результате облучения исходным рентгеновским пучком дифракционного блока, путем воздействия электрическим полем на пластину пьезоэлемента. Пластина пьезоэлемента имеет предварительно напыленные на обе противоположные поверхности указанной пластины два электрода и приклеенную к монокристаллической пластине с образованием блока, обеспечивающего получение рабочего профиля монокристаллической пластины, соответствующего требуемой сходимости рентгеновского пучка, за счет изменения кривизны рабочей поверхности монокристаллической пластины. Техническим результатом является расширение возможности изгиба рабочей поверхности монокристаллической пластины, заключающееся в дополнительном изменении кривизны указанной поверхности, за счет продольного смещения максимального прогиба изогнутых приклеенных друг к другу монокристаллической пластины и пластины пьезоэлемента в результате воздействия на пластину пьезоэлемента электрического поля. 2 з.п. ф-лы, 3 ил., 2 пр.

Изобретение относится к изготовлению распыляемой композитной мишени, содержащей фазу сплава Гейслера Co2MnSi, которая может быть использована при производстве микроэлектроники. Способ включает механическое смешивание порошков компонентов сплава с получением однородной порошковой смеси и ее спекание-прессование. Спекание-прессование порошковой смеси при температуре 600°С и давлении 2,5 кН путем пропускания последовательностей импульсов постоянного тока до 5 кА с длительностью импульса 3,3 мс через засыпку порошковой смеси с получением компакта. Полученный компакт плавят в кварцевом тигле индукционной печи при 1300°С в течение 3 часов с получением гомогенизированного слитка. Cлиток дробят и измельчают с получением частиц размером 1-200 мкм и проводят спекание-прессование композитной мишени из полученных частиц методом электроимпульсного плазменного спекания с контролем дилатометрической кривой усадки. Обеспечивается получение гомогенизированной по составу механически прочной композитной мишени, которая имеет пористость в диапазоне 2-40% и содержит исключительно фазу сплава Гейслера стехиометрического состава. 6 з.п. ф-лы, 4 ил., 2 пр.

Изобретение относится к изготовлению распыляемых композитных мишеней сплава Гейслера Co2MnSi, которые могут найти применение при производстве микроэлектроники. Способ включает механическое смешивание порошков компонентов сплава с получением однородной порошковой смеси и ее спекание. Спекание порошковой смеси ведут методом электроимпульсного плазменного спекания в графитовой пресс-форме при температуре 600°С и минимальном давлении 2,5 кН путем пропускания последовательностей импульсов постоянного тока 5000 А с длительностью импульса 3,3 мс через засыпку порошковой смеси с получением композитной мишени. Осуществляют контроль пористости мишени на основе данных дилатометрической кривой усадки. Обеспечивается получение механически прочных, не окисленных, композитных мишеней сплава с пористостью в диапазоне 10-30%. 1 з.п. ф-лы, 3 ил, 1 пр.

Изобретение относится к изготовлению распыляемой композитной мишени из сплава Гейслера Co2FeSi. Способ включает механическое смешивание порошков компонентов сплава Гейслера Co2FeSi с получением однородной порошковой смеси и ее спекание. Порошковую смесь готовят из высокочистых порошков кобальта, железа и кремния. Спекание порошковой смеси ведут методом электроимпульсного плазменного спекания в графитовой пресс-форме при температуре 600°С и минимальном давлении 2,5 кН путем пропускания последовательностей импульсов постоянного тока 5000 А с длительностью импульса 3,3 мс через засыпку порошковой смеси с получением композитной мишени из сплава Гейслера Co2FeSi. Осуществляют контроль пористости мишени на основе данных дилатометрической кривой усадки. Обеспечивается получение механически прочных, не окисленных композитных мишеней с пористостью в диапазоне 10-30%. 1 з.п. ф-лы, 3 ил., 1 пр.

Использование: для модуляции интенсивности рентгеновского излучения. Сущность изобретения заключается в том, что модуляцию интенсивности пучка рентгеновского излучения проводят путем изменения условий отражения рентгеновского излучения от пьезоэлектрического монокристалла в условиях приложения к нему электрического поля, при этом указанное изменение условий отражения рентгеновского излучения осуществляют за счет изменения пьезодеформации упомянутого монокристалла, приводящего к однородному изменению межплоскостного расстояния в кристаллической решетке упомянутого монокристалла, сопровождаемому угловым смещением его кривой дифракционного отражения (КДО), под воздействием постоянного электрического поля, напряженность Е которого изменяют в зависимости от требуемой величины интенсивности отраженного рентгеновского излучения I(θ) в соответствии с заданной формулой. Технический результат: обеспечение возможности оптимальной модуляции интенсивности рентгеновского пучка в режиме брэгговского отражения рентгеновского излучения от пьезоэлектрического монокристалла с малой (от 5 до 25 угловых секунд) полушириной исходной КДО в условиях приложения к нему постоянного (неимпульсного) электрического поля. 1 з.п. ф-лы, 2 табл., 2 ил.

Изобретение относится к изготовлению распыляемой композитной мишени, содержащей фазу сплава Гейслера Co2FeSi, которая может быть использована при производстве микроэлектроники. Способ включает механическое смешивание порошков компонентов сплава Гейслера Co2FeSi, спекание-прессование полученной смеси методом электроимпульсного плазменного спекания при температуре 600°С и минимальном давлении 2,5 кН. Спекание ведут путем пропускания последовательностей импульсов постоянного тока до 5 кА с длительностью импульса 3,3 мс через засыпку порошковой смеси с получением компакта. После этого ведут плавление полученного компакта в кварцевом тигле индукционной печи при 1300°С в течение 3 часов до полного расплавления с получением гомогенизированного слитка. Полученный слиток дробят и измельчают с получением частиц размером 1-200 мкм и проводят спекание-прессование композитной мишени методом электроимпульсного плазменного спекания с контролем дилатометрической кривой усадки. Обеспечивается получение гомогенизированной механически прочной композитной мишени заданной геометрии с пористостью в диапазоне 2-40%, содержащей фазу сплава Гейслера стехиометрического состава Co2FeSi. 6 з.п. ф-лы, 4 ил.

Изобретение относится к дифракционному блоку для управления сходимостью рентгеновского пучка. Дифракционный блок включает дифрагирующий элемент, выполненный в виде дифрагирующей монокристаллической пластины, и подложку, к которой приклеена указанная пластина с кривизной ее рабочей поверхности, образующей профиль дифрагирующего элемента. Заявленное устройство выполнено с использованием усадки клеевого слоя при его затвердевании. Техническим результатом является стабильное получение заданной кривизны рабочей поверхности дифрагирующей монокристаллической пластины, задающей требуемый вид сходимости рентгеновского пучка при сохранении расширенного амплитудного интервала настроечных температурных изменений полученной кривизны рабочей поверхности дифрагирующей монокристаллической пластины, а также повышение контролируемости формирования требуемого профиля дифрагирующего элемента в результате введения конструктивного стабилизирующего фактора криволинейной поверхности подложки, расположенной с ее стороны, обратной (противоположной) по отношению к ее приклеиваемой стороне. 7 з.п. ф-лы, 4 ил., 4 пр.,

Изобретение относится к устройству для управления сходимостью рентгеновского пучка. При осуществлении заявленной группы изобретений предусмотрено изменение температуры дифракционного блока, изготовленного с рабочим профилем его дифрагирующего элемента, соответствующим условию коллимации или фокусировки рентгеновского пучка, в соответствии с предлагаемыми двумя вариантами изготовления дифракционного блока, основанными на одновременном изгибе входящих в состав дифракционного блока дифрагирующего элемента и подложки. При этом дифрагирующий элемент выполнен в виде дифрагирующей монокристаллической пластины, искривляемой путем усадки при затвердевании клеевого слоя, нанесенного на подложку и закрепляющего на ней указанную пластину. Техническим результатом является возможность управления сходимостью рентгеновского пучка при сочетании упрощения конструкции дифракционного блока и расширения возможностей настройки коллимации или фокусировки рентгеновского пучка в результате увеличения диапазона угловых изменений сходимости дифрагированного рентгеновского пучка за счет управления сходимостью рентгеновского пучка. 3 н. и 12 з.п. ф-лы, 5 ил.

Изобретение относится к рентгеновской оптике, а именно к технике управления рентгеновским излучением с использованием рентгеновских монохроматоров, и может найти применение в рентгеновском структурном анализе при исследовании кристаллических структур, в том числе в технике рентгеновской спектрометрии, рентгеновской дифрактометрии, рентгеновской топографии и др

Изобретение относится к рентгеновской оптике, в частности к устройствам для отражения, фокусировки и монохроматизации потока рентгеновского излучения

 


Наверх