Патенты автора Абдрахимова Елена Сергеевна (RU)

Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов (бетонов) на основе химических связующих. Композиция для изготовления жаростойких поризованных композитов включает, мас.%: ортофосфорную кислоту H3PO4 10-15, отработанный катализатор ИМ-2201 55-60, сланцевый кокс с содержанием, мас.%: SiO2 - 16,4; Al2O3 - 9,8; Fe2O3 - 3,4; СаО - 27,8; MgO - 1,8; R2O - 3,6; п.п.п. - 37,2, 25-35. Технический результат – повышение прочности при сжатии и морозостойкости жаростойких поризованных композитов. 3 табл.

Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок. Композиция для производства пористого заполнителя включает, мас.%: натриевое жидкое стекло плотностью 1,41 г/см3 50-75, хлорид натрия, размолотый до размера менее 0,3 мм, 1-3, сланцевый кокс с содержанием оксидов, мас.%: SiO2 - 19,4; Al2O3 - 9,8; Fe2O3 - 3,4; СаО - 29,8; MgO - 1,8; R2O - 3,6; п.п.п. - 32,2, 22-49. Технический результат – повышение прочности при сжатии и коэффициента размягчения пористого заполнителя, утилизация промышленных отходов. 3 табл.

Изобретение относится к промышленности керамических материалов, преимущественно к составам масс для получения легковесного кирпича. Техническим результатом изобретения является снижение теплопроводности и плотности легковесного кирпича. В керамическую массу добавляют сланцевый кокс, размолотый до прохода через сито 0,14 мм, с содержанием оксидов, мас.%: SiO2 28,6; Al2O3 6,7; Fe2O3 5,4; СаО 21,5; МgO 2,2; R2O 3,5; п.п.п. 32,1 при следующем соотношении компонентов, мас.%: межсланцевая глина 50-70; сланцевый кокс 30-50. Использование техногенного сырья при получении легковесного кирпича способствует утилизации промышленных отходов, охране окружающей среды, расширению сырьевой базы для керамических материалов. 3 табл.

Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок. Композиция для производства пористого заполнителя включает, мас.%: натриевое жидкое стекло плотностью 1,41 г/см3 50-75, хлорид натрия, размолотый до размера менее 0,3 мм, 1-3, сланцевый кокс, размолотый до прохода через сито 0,14 мм и содержащий, мас.%: SiO2 - 28,6; Аl2O3 - 6,7; Fe2O3 - 5,4; CaO - 21,5; MgO - 2,2; R2O - 3,5; п.п.п. - 32,1, 22-49. Технический результат – повышение прочности при сжатии и коэффициента размягчения пористого заполнителя, утилизация промышленных отходов. 3 табл.

Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов (бетонов) на основе химических связующих. Техническим результатом изобретения является повышение предела прочности при сжатии и термостойкости жаростойких композитов, которая достигается добавлением в композицию микрокремнезем от производства ферросилиция при следующем соотношении компонентов, мас. %: отработанный катализатор ИМ-2201 10-15; щебень фракции 5-10 мм 33-40; Н3РО4 10-15; алюмохромистые отходы травления алюминиевых сплавов 24-30; микрокремнезем от производства ферросилиция 10-13. Технический результат - повышение механической прочности и термостойкости жаростойкого композита (бетона), утилизация промышленных отходов, охрана окружающей среды, расширение сырьевой базы для строительных материалов. 3 табл.

Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов (бетонов) на основе химических связующих. Композиция для изготовления жаростойких композитов включает, мас.%: отработанный катализатор ИМ-2201 10-15, щебень из карбонатных пород фракции 5-10 мм 33-40, Н3РО4 плотностью не менее 1,69 г/см3 10-15, алюмохромистые отходы травления алюминиевых сплавов с размером частиц от 0,1 до 5 мкм 24-30, глиежи, размолотые до прохода через сито 0,14 мм и с содержанием оксидов, мас.%: SiO2 - 61,5; Al2O3 -19,8; Fe2O3 - 7,4; СаО - 6,7; MgO - 2,2; R2O - 1,1; п.п.п. - 1,3, 10-13. Технический результат – повышение предела прочности при сжатии и термостойкости жаростойких композитов, утилизация промышленных отходов. 3 табл.

Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок. Композиция для производства пористого заполнителя включает, мас.%: натриевое жидкое стекло плотностью 1,41 г/см3 50-75, хлорид натрия, размолотый до размера менее 0,3 мм, 1-3, горелые породы, размолотые до прохода через сито 0,14 мм, 12-34, микрокремнезем от производства ферросилиция и ферросплавов со средним размером частиц не более 0,25 мкм и с содержанием оксидов, мас.%: SiO2 - 97,8; СаО - 1,3; MgO - 0,4; R2O - 0,5, 10-15. Технический результат – повышение прочности при сжатии и коэффициента размягчения пористого заполнителя, утилизация промышленных отходов. 3 табл.

Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок. Композиция для производства пористого заполнителя включает, мас.%: натриевое жидкое стекло плотностью 1,41 г/см3 50-75, хлорид натрия, размолотый до размера менее 0,3 мм, 1-3, горелые породы, размолотые до прохода через сито 0,14 мм, образованные после самовозгорания горючих сланцев с содержанием оксидов, мас.%: SiO2 - 38,4; Al2O3 - 17,18; Fe2O3 - 7,8; СаО - 11,13; MgO - 0,8; R2O - 1,5; п.п.п. - 23,19, 12-34, глиежи, размолотые до прохода через сито 0,14 мм с содержанием оксидов, мас.%: SiO2 - 61,5; Al2O3 - 19,8; Fe2O3 - 7,4; СаО - 6,7; MgO - 2,2; R2O - 1,1; п.п.п. - 1,3, 10-15. Технический результат – повышение прочности при сжатии и коэффициента размягчения пористого заполнителя, утилизация промышленных отходов. 3 табл.

Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов (бетонов) на основе химических связующих. Техническим результатом изобретения является повышение предела прочности при сжатии и термостойкости жаростойких композитов Композиция для изготовления жаростойких композитов (бетонов), включающая отработанный катализатор ИМ-2201, щебень из карбонатных пород со средней плотностью зерен 2-2,5 кг/м3, фракции 5-10 мм, Н3РО4, плотностью не менее 1,69 г/см3 и алюмохромистые отходы травления алюминиевых сплавов с размером частиц от 0,1 до 5 мкм, дополнительно содержит шлак от производства ферросилиция, размолотый до прохода через сито 0,14 мм и с содержанием оксидов, мас.%: SiO2 - 49,4; Al2O3 - 6,8; Fe2O3 - 4,4; СаО - 24,5; MgO - 15,1 при следующем соотношении компонентов, мас.%: отработанный катализатор ИМ-2201 10-15, щебень из карбонатных пород со средней плотностью зерен 2-2,5 кг/м3 33-40, Н3РО4 10-15, алюмохромистые отходы травления алюминиевых сплавов 24-30, шлак от производства ферросилиция 10-13. Использование техногенного сырья при получении жаростойкого бетона способствует утилизации промышленных отходов, охране окружающей среды, расширению сырьевой базы для строительных материалов. 3 табл.

Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок. Композиция для производства пористого заполнителя включает, мас.%: натриевое жидкое стекло плотностью 1,41 г/см3 50-75, хлорид натрия, размолотый до размера менее 0,3 мм, 1-3, горелые породы, размолотые до прохода через сито 0,14 мм, 12-34, отходы обогащения хромитовых руд, размолотые до прохода через сито 0,14, с содержанием оксидов, мас.%: SiO2 - 28,17; Аl2O3 - 2,37; Fe2O3 - 8,64; СаО - 2,24; MgO - 32,8; Сr2O3 - 12,68; R2O - 1,4; п.п.п. - 11,7, 10-15. Технический результат – повышение прочности при сжатии и коэффициента размягчения пористого заполнителя, утилизация промышленных отходов. 3 табл.

Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок. Композиция для производства пористого заполнителя включает, мас.%: натриевое жидкое стекло плотностью 1,41 г/см3 50-75, хлорид натрия, размолотый до размера менее 0,3 мм 1-3, горелые породы, размолотые до прохода через сито 0,14 мм 12-34, буровой шлам, размолотый до прохода через сито 0,14 мм и с содержанием оксидов, мас.%: SiO2 - 26,2; Al2O3 - 4,5; Fe2O3 - 5,6; СаО - 28,3; MgO - 1,2; R2O - 0,8; п.п.п. - 33,4, 10-15. Технический результат – повышение прочности при сжатии и коэффициента размягчения пористого заполнителя, утилизация промышленных отходов. 3 табл.

Изобретение относится к промышленности керамических материалов, преимущественно к составам масс для получения керамического стенового материала. Технический результат заключается в повышении морозостойкости и прочности при сжатии керамического стенового материала. Керамическая композиция для изготовления стенового материала включает, мас.%: межсланцевая глина 50-70, горелые породы 25-38, микрокремнезем (отход производства ферросилиция и ферросплавов со средним размером частиц не более 0,25 мкм с содержанием оксидов, %: SiO2 - 97,8; CaO - 1,3; MgO - 0,4; R2O - 0,5. 3 табл.

Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок. Композиция для производства пористого заполнителя включает, мас.%: натриевое жидкое стекло плотностью 1,41 г/см3 50-75, хлорид натрия, размолотый до размера менее 0,3 мм 1-3, ферропыль из самораспадающихся шлаков низкоуглеродистого феррохрома с размером частиц не более 0,5 мм и с содержанием оксидов, %: SiO2 - 30,2; Al2O3 - 7,8; СаО - 45,4; MgO - 7,3; Cr2O3 - 7,8; п.п.п. - 1,5. Технический результат - повышение прочности при сжатии, коэффициента размягчения пористого заполнителя, утилизация промышленных отходов. 3 табл.

Изобретение относится к промышленности керамических материалов, преимущественно к составам масс для получения керамического кирпича. Керамическая масса содержит следующие компоненты, мас.%: межсланцевая глина 50-70, горелые породы, образовавшиеся после самовозгорания горючих сланцев, 25-38, магнийсодержащий шлак от производства высокоуглеродистого феррохрома 5-12. Шлак от производства высокоуглеродистого феррохрома с содержанием оксидов, мас.%: Cr2O3 3,72; SiO2 27,33; Al2O3 20,3; Fe2O3 0,94; СаО 0,91; MgO 46,8, вводится в керамическую массу измельченным до прохождения сквозь сито 1,0 мм. Полученное техническое решение при использовании магнийсодержащего шлака от производства высокоуглеродистого феррохрома позволяет повысить морозостойкость и прочность керамического кирпича. Использование техногенного сырья при получении керамического кирпича способствует утилизации промышленных отходов, охране окружающей среды, расширению сырьевой базы для керамических материалов. 4 табл.

Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов (бетонов) на основе химических связующих. Технический результат заключается в повышении предела прочности при сжатии и термостойкости жаростойких композитов. Композиция для изготовления жаростойких композитов включает компоненты при следующем соотношении, мас. %: отработанный катализатор ИМ-2201 10-15, щебень 33-40, Н3PO4 10-15, алюмохромистые отходы травления алюминиевых сплавов 24-30, ферропыль из самораспадающихся шлаков низкоуглеродистого феррохрома 10-13. 3 табл.

Изобретение относится к промышленности керамических материалов, преимущественно к составам масс для получения керамического кирпича. Техническим результатом изобретения является повышение морозостойкости и прочности при сжатии керамического кирпича, которая достигается добавлением в керамическую композицию нефелинового отвального шлама, размолотого до прохода через сито 1,0 мм с содержанием оксидов, мас.%: SiO2 - 30,7; Al2O3 - 7,0; Fe2O3 - 5,3; CaO - 53,3; MgO - 1,4; R2O - 1,8 и SO3 - 0,5 при следующем соотношении компонентов, мас.%: межсланцевая глина 50-70, горелые породы 25-38, нефелиновый отвальный шлам 5-12. Использование техногенного сырья при получении керамического кирпича способствует утилизации промышленных отходов, охране окружающей среды, расширению сырьевой базы для керамических материалов. 4 табл.

Изобретение относится к области строительных материалов, в частности к производству жаростойких бетонов на основе химических связующих в виде фосфатных связок. Техническим результатом изобретения являются повышения предела прочности при сжатии и термостойкости жаростойких бетонов. Это достигается добавлением в композицию на основе фосфорной кислоты, шлака от выплавки ферротитана, песка и отработанного катализатора нефелинового отвального шлама с содержанием, %: SiO2 - 31,9; Al2O3 - 5,8; Fe2O3 - 4,3; СаО - 55,7; MgO - 1,4; R2O - 1,8 и SO3 - 0,5, при следующем соотношении компонентов, мас. %: отработанный катализатор ИМ-2201 10-15, нефелиновый отвальный шлам 33-40, песок 10-13, Н3РО4 10-15, шлак от выплавки ферротитана 24-30. 4 табл.

Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов (бетонов) на основе химических связующих. К химическим связующим, применяемым в жаростойких бетонах, относятся жидкое стекло, силикат-глыба (прозрачный стекловидный сплав щелочных силикатов - полуфабрикат жидкого стекла) и фосфатные связки. Техническим результатом изобретения являются повышения предела прочности при сжатии и термостойкости жаростойких композитов, которые достигаются добавлением в композицию кремнийсодержащей формовочной земли с содержанием оксидов, мас.%: SiO2 - 95,8; Al2О3 - 3,01; Fe2O3 - 0,88; СаО - 0,31 при следующем соотношении компонентов, мас.%: отработанный катализатор ИМ-2201 15-20, щебень 30-45, Н3РО4 12-17, кремнийсодержащая формовочная земля с содержанием оксидов, мас.%: SiO2 - 95,8, Al2O3 - 3,01, Fe2O3 - 0,88, СаО - 0,21 28-33. Полученное техническое решение при использовании кремнийсодержащей формовочной земли позволяет повысить показатели по механической прочности и термостойкости жаростойкого бетона. Использование техногенного сырья при получении жаростойкого композита (бетона) способствует утилизации промышленных отходов, охране окружающей среды, расширению сырьевой базы для строительных материалов. 4 ил.

Изобретение относится к промышленности керамических материалов, преимущественно к составам масс для получения керамического кирпича. Заявленная керамическая масса включает бейделлитовую глину, золошлаковый материал и электротермофосфорный шлак, содержащий, мас.%: SiO2 - 43,65; СаО - 47,3; MgO - 2,2; Fe2O3 - 1,28; Р2О3 - 2,4; Аl2О3 - 2,67; SO3 - 0,33; R2O - 0,17, при следующем соотношении компонентов, мас.%: бейделлитовая глина 50-70; золошлаковый материал 15-25, указанный электротермофосфорный шлак 15-25. Техническим результатом изобретения является повышение морозостойкости керамического кирпича до 84-87 циклов. Использование техногенного сырья при получении керамического кирпича способствует утилизации промышленных отходов, охране окружающей среды, расширению сырьевой базы для керамических материалов. 3 пр., 2 табл.

Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок. Композиция для производства пористого заполнителя содержит, мас.%: натриевое жидкое стекло плотностью 1,41 г/см3 50-75, хлорид натрия, размолотый до размера менее 0,3 мм, 1-3, горелые породы, размолотые до прохода через сито 0,14 мм, 12-34, нефелиновый отвальный шлам, размолотый до прохода через сито 0,14 мм с содержанием оксидов, мас.%: SiO2 - 31,9, Al2O3+TiO2 - 5,8, Fe2O3 - 4,3, CaO - 55,7, MgO - 1,4, R2O - 1,8, SO3 - 0,5, 10-15. Технический результат - повышение прочности на сжатие и коэффициента размягчения пористого заполнителя, утилизация промышленных отходов. 4 табл.

Изобретение относится к составам масс для получения легковесного кирпича. Технический результат изобретения заключается в повышении морозостойкости и снижении плотности легковесного кирпича. Керамическая масса содержит следующие компоненты, мас. %: межсланцевая глина 50-70; отход флотационного обогащения антрацитов 30-50. Отход флотационного обогащения антрацитов содержит следующие оксиды, мас. %: SiO2 - 28,4; Al2O3 - 13,7; Fe2O3 - 5,83;CaO - 1,53; MgO - 1,24; R2O - 1,92; п.п.п. - 47,38. 4 табл.
Изобретение относится к составам масс для получения керамического кирпича. Техническим результатом изобретения является повышение морозостойкости кирпича. Керамическая масса содержит следующие компоненты, мас.%: бейделлитовая легкоплавкая глина 50-70; золошлаковый материал 15-25; отходы золоторудного месторождения 15-25. Отходы золоторудного месторождения имеют следующий состав, мас.%: SiO2 - 62,63; Al2O3 - 17,18; Fe2O3 - 7,84; CaO - 1,2; MgO - 1,15; R2O - 6,6; п.п.п. - 3,4. 3 табл.

Изобретение относится к промышленности керамических материалов, преимущественно к составам масс для получения керамического кирпича. Техническим результатом изобретения является повышение морозостойкости и прочности при сжатии керамического кирпича. Керамическая композиция содержит межсланцевую глину и железосодержащий шлак ТЭЦ с содержанием, мас. %: SiO2 - 53,3; Al2O3 - 4,5; Fe2O3 - 31,5; CaO -1,2; MgO - 0,5; Na2O - 0,47; K2O - 0,13; п.п.п. - 8,4, при следующем соотношении компонентов, мас. %: межсланцевая глина 50-70; железосодержащий шлак ТЭЦ 30-50. Использование техногенного сырья при получении керамического кирпича способствует утилизации промышленных отходов, охране окружающей среды, расширению сырьевой базы для керамических материалов. 3 табл.

Изобретение относится к области строительных материалов, в частности к производству жаростойких бетонов на основе химических связующих. Технический результат заключается в повышении предела прочности при сжатии и термостойкости жаростойких бетонов. Композиция для изготовления жаростойких бетонов включает компоненты при следующем соотношении, мас.%: отработанный катализатор ИМ-2201 10-15, щебень 33-40, песок 10-13, H3PO4 10-15, кальцийсодержащий шлак от производства среднеуглеродистого феррохрома с содержанием, %: Cr2O3 - 4,91; SiO2 - 26,38; Al2O3 - 5,63; FeO - 1,0; CaO - 49,18; MgO - 12,9 24-30. 3 табл.

Изобретение относится к области строительных материалов, в частности к производству жаростойких бетонов на основе химических связующих. Техническим результатом изобретения является повышение предела прочности при сжатии и термостойкости жаростойких бетонов. Композиция для жаростойкого бетона содержит фосфорную кислоты и отработанный катализатор ИМ-2201, карбонатный шлам системы водоочистки, алюмокальциевый шлам и шлам щелочного травления алюминия и его сплавов с содержанием, мас.%: SiO2 - 1,8; Al2O3 - 48,8; Fe2O3 - 1,2; CaO - 1,3; MgO - 2,5; R2O - 9,9; п.п.п. 34,5 при следующем соотношении компонентов, мас.%:отработанный катализатор ИМ-2201 10-15, карбонатный шлам системы водоочистки 33-40, алюмокальциевый шлам 10-13, H3PO4 10-15, шлам щелочного травления алюминия и его сплавов с содержанием, мас.%: SiO2- 1,8; Al2O3 - 48,8; Fe2O3 - 1,2; CaO - 1,3; MgO - 2,5; R2O - 9,9; п.п.п. 34,5 24-30. Использование техногенного сырья при получении жаростойкого бетона способствует утилизации промышленных отходов, охране окружающей среды и расширению сырьевой базы для строительных материалов. 2 табл.

Изобретение относится к области строительных материалов, в частности к производству жаростойких бетонов на основе химических связующих. Техническим результатом изобретения являются повышения предела прочности при сжатии и термостойкости жаростойких бетонов. Композиция для изготовления жаростойких бетонов, включающая отработанный катализатор ИМ-2201, щебень из карбонатных пород фракции 5-10 мм, речной песок с модулем крупности 1,68 и H3PO4, дополнительно содержит железосодержащий шлак ТЭЦ с содержанием, мас.%: SiO2 - 53,3; Al2O3 - 4,5; Fe2O3 - 31,5; CaO - 1,2; MgO - 0,5; Na2O - 0,47; K2O - 0,13; п.п.п. - 8,4 при следующем содержании компонентов, мас.%: отработанный катализатор ИМ-2201 10-15, щебень из карбонатных пород фракции 5-10 мм 33-40, речной песок с модулем крупности 1,68 10-13, H3PO4 10-15, железосодержащий шлак ТЭЦ с содержанием, мас.%:SiO2 - 53,3; Al2O3 - 4,5; Fe2O3 - 31,5; CaO - 1,2; MgO - 0,5; Na2O - 0,47; K2O - 0,13; п.п.п. - 8,4 24-30. 3 табл.

Изобретение относится к области строительных материалов, в частности к производству жаростойких бетонов на основе фосфатных связок. Техническим результатом изобретения является повышение предела прочности при сжатии и термостойкости жаростойких бетонов. Композиция для изготовления жаростойких бетонов, включающая отработанный катализатор ИМ-2201, карбонатный щебень фракции 5-10 мм, речной песок с модулем крупности 1,68 и Н3РО4 плотностью не менее 1,69 г/см3, дополнительно содержит магнийсодержащий шлак от производства высокоуглеродистого феррохрома с содержанием, мас. %: Cr2O3 - 3,72; SiO2 - 28,33; Al2O3 - 19,3; FeO - 0,94; СаО - 0,91; MgO - 46,8, при следующем соотношении компонентов, мас. %: отработанный катализатор ИМ-2201 - 10-15, карбонатный щебень фракции 5-10 мм - 33-40, речной песок с модулем крупности 1,68 - 10-13, H3PO4 плотностью не менее 1,69 г/см3 - 10-15, магнийсодержащий шлак от производства высокоуглеродистого феррохрома с содержанием, мас. %: Cr2O3 - 3,72; SiO2 - 28,33; Al2O3 - 19,3; FeO - 0,94; СаО - 0,91; MgO - 46,8, - 24-30. 2 табл.

Изобретение относится к области строительных материалов, в частности к производству жаростойких бетонов на основе химических связующих. Техническим результатом изобретения является повышение предела прочности при сжатии и термостойкости жаростойких бетонов. Композиция для изготовления жаростойких бетонов, включающая отработанный катализатор ИМ-2201, щебень из карбонатных пород фракции 5-10 мм, речной песок с модулем крупности 1,68 и H3PO4, дополнительно содержит железосодержащий отход гидрометаллургического производства цинка с содержанием, мас.%: SiO2 - 30,4; Al2O3 - 10,2; Fe2O3 - 43,2; CaO - 10,4; MgO - 2,8; R2O - 3,0 при следующем содержании компонентов, мас.%: отработанный катализатор ИМ-2201 10-15, щебень из карбонатных пород фракции 5-10 мм 33-40, речной песок с модулем крупности 1,68 10-13, H3PO4 10-15, железосодержащий отход гидрометаллургического производства цинка с содержанием, мас.%: SiO2 - 30,4; Al2O3 - 10,2; Fe2O3 - 43,2; CaO - 4,10; MgO - 2,8; R2O - 3,0 24-30. 3 табл.

Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок. Композиция для производства пористого заполнителя включает, мас.%: натриевое жидкое стекло плотностью 1,41 г/см3 50-70, хлорид натрия, размолотый до размера менее 0,3 мм, 1-3, отход углепереработки, образующийся при обогащении коксующихся углей, содержащий мас.%: SiO2 - 53,05, Al2O3 - 17,4, Fe2O3 - 3,74, MgO - 1,90, CaO - 3,52, R2O - 3,81, п.п.п. - 16,52, 22-49. Технический результат - повышение прочности при сжатии и коэффициента размягчения пористого заполнителя, утилизация промышленных отходов. 4 табл.

Изобретение относится к области строительных материалов, в частности к производству жаростойких бетонов на основе химических связующих. Техническим результатом изобретения является повышение предела прочности при сжатии и термостойкости жаростойких бетонов. Композиция для жаростойких бетонов содержит, мас.%: отработанный катализатор ИМ-2201 10-15, щебень из карбонатных пород фракции 5-10 мм 33-40, песок с модулем крупности 1,68 10-13, H3PO4 10-15, шлам карналлитовых хлоратов, образующийся при флотационном обогащении титаномагниевых руд с содержанием, мас.%: SiO2 12,8; Al2O3 19,4; Fe2O3 19,8; CaO 16,4; MgO 5,2; TiO2 6,4; п.п.п. 20 - 24-30. 3 табл.

Изобретение относится к области строительных материалов, в частности к производству жаростойких бетонов на основе химических связующих. Технический результат заключается в повышении предела прочности при сжатии и термостойкости жаростойких бетонов. Композиция жаростойких бетонов включает компоненты при следующем соотношении, мас.%: отработанный катализатор ИМ-2201 10-15, щебень 33-40, песок 10-13, H3PO4 10-15, электросталеплавильный шлак (содержащий, мас.%: SiO2 - 21,15; Al2O3 - 8,81; Fe2O3 - 14,9; CaO - 42,98; MgO - 11,77; SO3 - 0,24; Na2O - 0,07; K2O - 0,08) 24-30. 3 табл.

Изобретение относится к составам масс для получения керамического кирпича. Техническим результатом изобретения является повышение морозостойкости и прочности при сжатии керамического кирпича. Керамическая масса содержит, мас. %: межсланцевая глина 50-70; электросталеплавильный шлак 30-50. Электросталеплавильный шлак имеет следующий состав, мас. %: SiO2 - 21,15; Al2O3 - 8,81; Fe2O3 - 14,9; СаО - 42,98; MgO - 11,77; SO3 - 0,24; Na2O - 0,07; K2O - 0,08. 3 табл.
Изобретение относится к области строительных материалов, в частности к производству жаростойких бетонов (композитов) на основе химических связующих. Композиция для изготовления жаростойких бетонов содержит, мас.%: щебень из карбонатных пород фракций 5-10 мм 25-30, песок речной с модулем крупности 1,68 22-30, H3PO4, в которой массовая доля ортофосфорной кислоты не менее 85%, 10 - 12, отработанный катализатор ИМ-2201, содержащий оксиды, мас.%: SiO2 - 7,90; Al2O3 - 74,5; Fe2O3 - 0,15; MgO - 0,10; Cr2O3 - 14,8; R2O - 1,57, 10-13, алюмосодержащий шлам щелочного травления алюминия, содержащий 80% частиц размером менее 20 мкм и оксиды, мас.%: SiO2 - 2,5; Al2O3 - 45,2; Fe2O3 - 1,4; CaO - 1,2; MgO - 5,2; R2O - 9,8; п.п.п. - 34,7, 10-13, кальцийсодержащий шлам обработки алюминия карбонатным шламом, образующимся после умягчения воды, содержащий 80% частиц размером менее 20 мкм и оксиды, мас.%: SiO2 - 8,1; Al2O3 - 14,2; Fe2O3 - 0,7; CaO - 27,4; MgO - 8,1; R2O - 1,4; п.п.п. - 39,1, 10-15. Технический результат - повышение предела прочности при сжатии и термостойкости жаростойких бетонов, утилизация промышленных отходов. 3 табл.

Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов (бетонов) на основе химических связующих. Композиция для изготовления жаростойких композитов включает, мас.%: отработанный катализатор ИМ-2201 10-13, щебень из карбонатных пород фракций 5-10 мм 25-30, песок речной с модулем крупности 1,68 22-30, H3PO4 10-12, алюмосодержащий шлам щелочного травления алюминия 10-13, кальцийсодержащий шлам обработки алюминия карбонатным шламом, образующимся после умягчения воды, 10-15. Технический результат - повышение предела прочности при сжатии и термостойкости жаростойких композитов, утилизация промышленных отходов. 3 табл.

Изобретение относится к области строительных материалов, в частности к производству жаростойких бетонов (композитов) на основе химических связующих. Композиция для изготовления жаростойких бетонов содержит, мас.%: отработанный катализатор ИМ-2201 10-15, щебень из карбонатных пород фракции 5-10 мм 33-40, H3PO4 10-15, доломитовые высевки 10-13, шлам, образующийся в результате травления алюминия и его сплавов концентрированными растворами едкого натра с содержанием, мас.%: SiO2 - 4,5; Al2O3 - 78,5; Fe2O3 - 2,9; СаО - 2,5; MgO - 1,1; R2O - 4,1; п.п.п. - 6,4, 24-30. Технический результат - повышение предела прочности при сжатии и термостойкости жаростойких бетонов, утилизация промышленных отходов. 4 табл.

Изобретение относится к области строительных материалов, в частности к производству жаростойких бетонов (композитов) на основе химических связующих. Композиция для изготовления жаростойких бетонов включает, мас.%: отработанный катализатор ИМ-2201 10-15, щебень из карбонатных пород фракции 5 - 10 мм 33-40, известняковую муку 10-13, Н3РO4 10-15, шлам, образующийся в результате травления алюминия и его сплавов концентрированными растворами едкого натра с содержанием, мас.%: SiO2 - 4,5; Аl2O3 - 78,5; Fе2О3 - 2,9; СаО-2,5; MgO - 1,1; R2O - 4,1; п.п.п. - 6,4, 24-30. Технический результат - повышение предела прочности при сжатии и термостойкости жаростойких бетонов, утилизация промышленных отходов. 4 табл.

Изобретение относится к промышленности керамических материалов, преимущественно к составам масс для получения керамического кирпича. Техническим результатом изобретения является повышение морозостойкости и кислотостойкости кирпича, которая достигается добавлением в керамическую массу кальцийсодержащего доменного шлака афанитовой структуры с содержанием, мас.%: SiO2 - 36,1; Al2O3 - 12,4; Fe2O3 - 1,5; СаО - 38,8; MgO - 9,4; R2O - 1,8 при следующем соотношении компонентов, мас.%: бейделлитовая легкоплавкая глина 50-70; золошлаковый материал 15-25; кальцийсодержащий доменный шлак афанитовой структуры 15-25. 2 табл.

Изобретение относится к промышленности керамических материалов, преимущественно к составам масс для получения керамического кирпича. Техническим результатом изобретения является повышение морозостойкости и прочности при сжатии керамического кирпича, которая достигается добавлением в керамическую массу шлака от сжигания бурого угля, содержащего, мас.%: SiO2 - 53,8; Al2O3 - 5,8; Fe2O3 - 10,3; СаО - 22,8; MgO - 3,1; R2O -4,2 при следующем соотношении компонентов, мас.%: межсланцевая глина 50-70; шлак от сжигания бурого угля 30-50. 4 табл.

Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок. Композиция для производства пористого заполнителя включает, мас.%: натриевое жидкое стекло плотностью 1,41 г/см3 50-75, хлорид натрия, размолотый до размера менее 0,3 мм 1-3, сланцевую золу, содержащую, мас.%: SiO2 - 30,8, Аl2О3 - 13,8, Fе2О3 - 7,2, MgO - 1,4, CaO - 15,2, R2О - 4,2, п.п.п. - 27,4, 22-49. Технический результат - повышение прочности при сжатии и коэффициента размягчения пористого заполнителя, утилизация промышленных отходов. 4 табл.
Изобретение относится к промышленности керамических материалов, преимущественно к составам масс для получения легковесного кирпича. Техническим результатом изобретения является повышение морозостойкости и снижение плотности легковесного кирпича, которая достигается добавлением в керамическую массу сланцевого шлака с содержанием, мас.%: SiO2 - 22,4; Al2O3 - 12,2; Fe2O3 - 7,8; CaO - 17,3; MgO - 1,3; R2O - 5,2; п.п.п. - 33,8 при следующем соотношении компонентов, мас.%: межсланцевая глина 50-70 сланцевый шлак 30-50 4 табл.

Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок. Композиция для производства пористого заполнителя включает, мас.%: натриевое жидкое стекло плотностью 1,41 г/см3 50-75, хлорид натрия, размолотый до размера менее 0,3 мм, 1-3, сланцевый шлак, размолотый до прохода через сито 0,14 мм и содержащий, мас.%: SiO2 - 22,4; Al2O3 - 12,2; Fe2O3 - 7,8; MgO - 1,3; CaO - 17,3; R2O - 5,2; п.п.п. - 33,8, 22-49. Технический результат - повышение прочности при сжатии и коэффициента размягчения пористого заполнителя, утилизация промышленных отходов. 4 табл.

Изобретение относится к промышленности керамических материалов, преимущественно к составам масс для получения легковесного кирпича. Техническим результатом изобретения является повышение морозостойкости и снижение плотности легковесного кирпича. Керамическая масса для получения легковесного кирпича включает следующие компоненты, мас. %: межсланцевую глину 50-70; сланцевую золу 30-50. Используется сланцевая зола с содержанием, мас. %: SiO2 - 30,8; Al2O3 - 13,8; Fe2O3 - 7,2; CaO - 15,2; MgO - 1,4; R2O - 4,2; п.п.п. - 27,4. 4 табл.

Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок. Композиция для производства пористого заполнителя включает, мас.%: натриевое жидкое стекло плотностью 1,41 г/см3 50-75, хлорид натрия, размолотый до размера менее 0,3 мм, 1-3, алюмосодержащий наноразмерный шлам щелочного травления алюминия 22-49. Технический результат - повышение прочности при сжатии и коэффициента размягчения пористого заполнителя, утилизация промышленных отходов. 3 табл.

Изобретение относится к области строительных материалов, в частности к производству жаростойких бетонов (композитов) на основе химических связующих. К химически связующим, применяемым в жаростойких бетонах, относятся жидкое стекло, силикат-глыбу (прозрачный стекловидный сплав щелочных силикатов - полуфабрикат жидкого стекла) и фосфатные связки. Техническим результатом изобретения является повышение прочности и термостойкости жаростойких бетонов. Композиция для изготовления жаростойких бетонов включает компоненты при следующем соотношении, мас.%: отработанный катализатор ИМ-2201 10-15, щебень 33-40, песок 10-13, H3PO4 10-15, шлам, образующийся в результате травления алюминия и его сплавов концентрированными растворами едкого натра с содержанием, мас.%: SiO2 - 4,5; Al2O3 - 78,5; Fe2O3 - 2,9; CaO - 2,5; MgO - 1,1; R2O - 4,1; п.п.п. - 6,4 24-30. 4 табл.

Изобретение относится к промышленности керамических материалов, преимущественно к составам масс для получения легковесного кирпича. Техническим результатом изобретения является повышение морозостойкости и снижение плотности легковесного кирпича. Керамическая композиция для изготовления легковесного кирпича включает следующие компоненты, масс.%: отходы обогащения бурого угля, содержащие мас.%: SiO2 - 40,82; Al2O3 - 19,92; Fe2O3 - 9,03; MgO - 1,4; CaO - 4,28; R2O - 3,15; п.п.п. - 21,4 в количестве 30-5; межсланцевую глину 50-70. 4 табл.

Изобретение относится к промышленности керамических материалов, преимущественно к составам масс для получения кирпича. Техническим результатом изобретения являются повышение морозостойкости и прочности кирпича на сжатие. Керамическая масса, включающая легкоплавкую глину и золошлаковую смесь от сжигания горючих сланцев, дополнительно содержит доломитовые высевки при следующем соотношении компонентов, мас.%: легкоплавкая глина 65-85, золошлаковая смесь от сжигания горючих сланцев 10-20, доломитовые высевки 5-15. 4 табл.

Изобретение относится к составам масс для получения керамического кирпича. Технический результат изобретения - в повышении морозостойкости и кислотостойкости кирпича. Керамическая масса содержит следующие компоненты, мас.%: бейделлитовая легкоплавкая глина - 50-70; золошлаковый материал - 15-25; кальцийсодержащий доменный шлак витрофировой структуры - 15-25. Кальцийсодержащий доменный шлак витрофировой структуры имеет следующий состав, мас.%: SiO2 - 32,2; Al2O3 - 12,3; Fe2O3 - 2,8; СаО - 41,0; MgO - 8,8; R2O - 2,9. 3 табл.

Изобретение относится к промышленности керамических материалов, преимущественно к составам масс для получения кирпича. Техническим результатом изобретения является повышение морозостойкости и прочности кирпича на сжатие. Керамическая масса, включающая легкоплавкую глину и золошлаковую смесь от сжигания горючих сланцев, дополнительно содержит известняковую муку при следующем соотношении компонентов, мас.%: легкоплавкая глина 65-85, золошлаковая смесь от сжигания горючих сланцев 10-20, известняковая мука 5-15. 4 табл.

 


Наверх