Патенты автора Кульчин Юрий Николаевич (RU)

Изобретение относится к способу лазерной обработки металлических материалов и может быть использовано при лазерном сплавлении металлических материалов с контролем тепловых процессов в реальном времени, в т.ч. в аддитивном производстве. Предварительно на основе исходных данных, включающих температуру расплава конкретного металлического материала, диаметр и скорость перемещения пучка лазерного излучения, определяют диапазон допустимых значений плотности мощности и соответствующий ему диапазон допустимых значений напряжения, содержащий нормированное напряжение, соответствующее расчетной мощности. Эмпирически определяют зависимость между значениями напряжения из диапазона допустимых значений и интенсивностью оптического излучения из ванны расплава на ультрафиолетовом участке спектра, которую используют в качестве параметра лазерной обработки. Затем нагревают локальный участок металлического материала пучком лазерного излучения и при формировании ванны расплава приемником оптического излучения, в качестве которого используют фотоэлектрический приемник, регистрируют интенсивность оптического излучения из ванны расплава на ультрафиолетовом участке спектра. На основе ранее определенной зависимости преобразуют полученные значения в соответствующие фактические значения напряжения. В случае если фактическое напряжение не попадает в диапазон допустимых значений, изменяют аналоговый сигнал напряжения, подаваемый на аналоговый вход лазера таким образом, чтобы выходное лазерное излучение имело расчетное значение мощности. Технический результат заключается в обеспечении возможности эффективного и сравнительно простого в осуществлении управления термодинамической температурой ванны расплава металла в режиме реального времени, при котором фактические значения температур максимально приближены к диапазону допустимых значений, что способствует минимизации неконтролируемых температурных напряжений в готовом изделии. 1 з.п. ф-лы, 6 ил., 3 пр.

Изобретение относится к способу влажной лазерной очистки твердых материалов и может быть использовано в машиностроении и авиастроении для селективной очистки металлической обшивки планеров воздушных судов от лакокрасочных материалов. Тонкий слой жидкости на обрабатываемой поверхности формируют посредством плоского щелевого сопла. Облучение поверхности производят импульсным несфокусированным пучком лазерного излучения. Излучатель лазера перемещают над обрабатываемой поверхностью равномерно со скоростью, обеспечивающей перекрытие диаметров абляции лазерного пучка по осям х и y. Длительность лазерного импульса устанавливают не более 10⋅10-9 с, энергию импульса не менее 800 мДж, частоту следования импульсов от 10 Гц и более. Способ позволяет селективно удалять лакокрасочные материалы с поверхности крупногабаритных конструкций сложной пространственной формы без термических (тепловых) напряжений, вызывающих деформации (коробления) материала тонкостенной металлической обшивки летательного аппарата. 1 з.п. ф-лы, 1 ил.

Изобретение относится к осветительным устройствам, обеспечивающим освещение светом, максимально соответствующим спектру солнечного света за счет использования светоизлучающих диодов. Светильник содержит набор светодиодов с разными спектрами излучения, лежащими в диапазоне длин волн фотосинтетически активной части солнечного спектра порядка 390-740 нм, снабженных драйверами питания. Использованы светодиоды, спектры излучения которых находятся в диапазоне 390-740 нм. Спектры использованных светодиодов перекрывают друг друга в разных спектральных участках диапазона, предпочтительно на уровне 0,1-0,8 от максимальной амплитуды на центральной длине волны излучения. Использованы шесть типов светодиодов разного спектра мощностью от 0,1 до 500 Вт. Излучаемый спектр включает спектры излучения таких светодиодов, как Белый, Ультрафиолетовый, Синий, Красный, Инфракрасный и Растительный свет. Драйверы названных светодиодов выполнены с возможностью подачи энергии питания такой величины, чтобы уровень светового потока от соответствующих светодиодов был равным 1; 0,21; 0,83; 0,09; 0,71 от уровня светового потока, излучаемого светодиодом Растительный свет. Тип спектра сформирован набором однотипных светодиодов с возможностью генерирования мощности светового потока, одинаковой для каждого отдельного типа спектра. Названные светодиоды имеют максимальное излучение на длинах волн, соответственно, 583, 403, 490, 630, 737 и 647 нм. Использование изобретения позволит обеспечить светильнику, состоящему из светодиодов шести разных типов излучения, спектр излучения наиболее близкий солнечному свету. 2 з.п. ф.лы, 3 табл., 7 ил.

Изобретение относится к непрерывной разливке металла. Кристаллизатор содержит две пары подвижных стенок. Рабочая поверхность первой пары стенок содержит наклонный (5) и вертикальный (6) участки, закрепленные на бойках (1). Рабочая поверхность второй пары (7) стенок выполнена вертикальной и плотно прилегает к первой паре стенок под углом 90° к рабочей поверхности первой пары стенок, с образованием в кристаллизаторе полости, ограниченной рабочими поверхностями обеих пар стенок. Обе пары подвижных стенок установлены на четырех эксцентриковых приводных валах (8) с одинаковыми эксцентриситетами и эксцентриковыми втулками (9), с возможностью возвратно-поступательного движения от приводных валов через эксцентриковые втулки. Бойки совершают вращательное движение на эксцентриковых приводных валах навстречу друг другу, а стенки второй пары (7) перемещаются в вертикальной плоскости. Обеспечивается снижение проскальзывания заготовки в направлении ее хода и повышение механических свойств заготовки. 3 ил.

Изобретение относится к непрерывной разливке металла. Кристаллизатор содержит две пары стенок. Стенки первой пары выполнены в виде бойков с рабочей торцевой поверхностью, причем у первого бойка (1) она выполнена вертикальной, а у второго бойка (2) рабочая поверхность содержит наклонный (5) и вертикальный (6) участки. Неохлаждаемый первый боек (1) выполнен неподвижным и установлен на приводных валах (8) с цилиндрическими втулками (14). Вертикальная поверхность второй пары стенок (7) плотно прилегает к первой паре стенок под углом 90° к рабочей поверхности первой пары стенок с образованием в кристаллизаторе полости. Эксцентриковые (9) и цилиндрические (14) втулки на приводных валах (8) обеспечивают возвратно-поступательного движение приводных валов навстречу друг другу, при этом подвижный боек имеет охлаждение и совершает вращательное движение на эксцентриковых приводных валах навстречу неподвижному бойку. Вертикальные стенки (7) перемещаются в вертикальной плоскости с обеспечением двух циклов деформирования заготовки. Обеспечивается предупреждение преждевременного захолаживания расплава в кристаллизаторе и снижение проскальзывания заготовки в направлении ее хода, повышение механических свойств заготовки. 3 ил.

Изобретение относится к способу получения материала с композиционным антикоррозионным покрытием для биосовместимых имплантатов с ограниченным сроком нахождения в организме, служащих для замены и/или регенерации поврежденных костных тканей, и может найти применение в имплантационной хирургии. Способ осуществляют методом порошковой лазерной наплавки в защитной газовой среде с применением установки 3D-печати, управляемой с помощью программных средств. Порошок магния превращают в расплав с помощью лазерного луча непосредственно перед нанесением на подложку либо предшествующий слой, при этом наплавку осуществляют послойно, причем каждый слой наносят в несколько проходов лазерного луча с формированием сплошного слоя металлического магния из последовательно наплавленных дорожек. Затем проводят плазменно-электролитическое оксидирование сплавленного материала в биполярном режиме: потенциостатическом при напряжении 370-390 В в ходе анодной поляризации поверхности материала и гальванодинамическом при силе тока, изменяющейся от 11 до 7 А со скоростью развертки минус 0,04 А/с, в ходе катодной поляризации, в электролите, содержащем, г/л: глицерофосфат кальция C3H7CaO6P 20-30, фторид натрия NaF 4-7 и силикат натрия Na2SiO3 7-10, с получением слоя гидроксиапатита Са10(РO4)6(ОН)2. После этого на поверхность полученного слоя наносят ультрадисперсный политетрафторэтилен путем 4-кратного погружения в его 15% суспензию в изопропиловом спирте. После каждого погружения проводят сушку на воздухе и термообработку наносимых слоев УПТФЭ при 310-320°С в течение 10-15 мин. Технический результат - упрощение способа за счет уменьшения числа стадий, снижение трудозатрат и расхода электроэнергии на его осуществление, уменьшение расхода реагентов при одновременном улучшении биосовместимости полученного композитного материала. 2 з.п. ф-лы, 2 табл., 2 ил., 2 пр.

Изобретение относится к устройству для лазерной очистки корпуса судна. Устройство содержит контейнер с отверстием для вывода лазерного излучения и лазер. Контейнер выполнен герметичным с фокусирующей и сканирующей системой, выходное отверстие которой выполнено как щелевидный конфузор. Контейнер установлен на телеуправляемом необитаемом подводном аппарате. Фокусирующая и сканирующая система посредством оптоволокна сообщена с лазером, установленным на борту судна. Полость конфузора сообщена посредством гибкого шланга с источником сжатого воздуха, установленного на борту судна. Сканирующая система выполнена с возможностью формирования лазерного излучения по длине щелевидного конфузора. Технический результат изобретения заключается в обеспечении возможности работы под водой при упрощении позиционирования устройства над очищаемой поверхностью. 1 ил.

Изобретение относится к осветительным устройствам, обеспечивающим освещение светом, имитирующим спектр солнечного света за счет использования светоизлучающих диодов. Светильник содержит набор известных светодиодов с разными спектрами излучения, лежащими в диапазоне частот порядка 400-800 нм, снабженных драйверами питания. В светильнике использованы светодиоды, пики спектров излучения которых находятся в диапазоне частот 483-654 нм. Спектры использованных светодиодов перекрывают друг друга в разных спектральных участках диапазона, предпочтительно на уровне 0,4-0,8 от максимальной амплитуды на центральной частоте излучения. При этом использованы четыре типа светодиодов разного спектра мощностью от 0,1 до 200 Вт, а излучаемый спектр включает спектры излучения таких светодиодов, как Сине-зеленый, Зеленый, Теплый белый и Красный свет, с возможным отклонением от центральной частоты на ±20 нм. Драйверы названных светодиодов выполнены с возможностью подачи энергии питания такой величины, чтобы уровень светового потока от соответствующих светодиодов был равным 1,52; 1,34; 1,69 от уровня светового потока, излучаемого светодиодом Красный свет, с возможным отклонением указанных значений энергии на ±25%, либо каждый тип спектра сформирован набором однотипных светодиодов, излучающих свет одной и той же частоты, с возможностью генерирования мощности светового потока, одинаковой для каждого отдельного типа спектра. Кроме того, названные светодиоды имеют максимальное излучение на частотах соответственно 490, 524, 587 и 634 нм с возможным отклонением от центральной частоты на ±20 нм. Технический результат заключается в обеспечении для светильника спектра излучения, близкого к спектру излучения солнечного света в моделируемом частотном диапазоне, при минимизации общего количества используемых светодиодов. 3 табл., 5 ил.

Изобретение относится к осветительным устройствам, обеспечивающим освещение светом, имитирующим спектр солнечного света за счет использования светоизлучающих диодов. В устройстве использованы светодиоды, пики спектров излучения которых находятся в диапазоне частот 507-650 нм. Спектры перекрывают друг друга в разных спектральных участках диапазона, предпочтительно, на уровне 0,4-0,8 от максимальной амплитуды на центральной частоте излучения. Использованы три типа светодиодов разного спектра мощностью от 0,1 до 200 Вт и более, а излучаемый спектр включает спектры излучения таких светодиодов, как Зеленый, Теплый белый и Красный свет, с возможным отклонением от центральной частоты на ±20 нм. Драйверы светодиодов выполнены с возможностью подачи энергии питания такой величины, чтобы уровень светового потока от соответствующих светодиодов был равным 1,56 и 1,82 от уровня светового потока, излучаемого светодиодом Красный свет, с возможным отклонением указанных значений на ±25%, либо каждый тип спектра сформирован набором однотипных светодиодов, излучающих свет одной и той же частоты, с возможностью генерирования мощности светового потока одинаковой для каждого отдельного типа спектра. Названные светодиоды имеют максимальное излучение на частотах соответственно 524, 587 и 634 нм с возможным отклонением от центральной частоты на ±20 нм. При таком выполнении обеспечивается спектр излучения, близкий к спектру излучения солнечного света в моделируемом частотном диапазоне, при минимизации общего количества используемых светодиодов. 5 ил., 3 табл.

Изобретение относится к области растениеводства, в частности к осветительным устройствам. Светильник содержит набор известных светодиодов с разными спектрами излучения, лежащими в диапазоне порядка 400-800 нм, снабженных драйверами. При этом из известных светодиодов с разными спектрами отбирают светодиоды, спектр излучений которых находится в диапазоне 443-650 нм. Спектры отобранных светодиодов перекрывают друг друга в разных спектральных участках диапазона, предпочтительно на уровне 0,5 от максимальной амплитуды. Причем использованы 5 типов светодиодов мощностью 10W каждый, в том числе теплый белый, синий, голубой; зеленый и полный спектр. Драйверы светодиодов выполнены с возможностью подачи на них энергии, составляющей соответственно 1,4; 0,3; 0,3; 1,25 от уровня энергии, подаваемой на светодиод полного спектра. Изобретение обеспечивает светильнику спектр излучения, соответствующий солнечному свету, при минимизации общего количества используемых светодиодов. 4 ил., 2 табл.

Изобретение относится к осветительным устройствам, обеспечивающим освещение светом, максимально соответствующим спектру солнечного света за счет использования светоизлучающих диодов. Светильник содержит набор светодиодов с разными спектрами излучения, моделирующими фотосинтетически активную часть солнечного спектра, снабженных драйверами питания. Используют светодиоды, максимальные амплитуды излучения которых находятся в диапазоне длин волн 430-650 нм. Спектры использованных светодиодов перекрывают друг друга в разных спектральных участках диапазона, предпочтительно на уровне 0,4-0,6 от максимальной амплитуды на центральной длине волны излучения. Использованы шесть типов светодиодов разного спектра: Теплый белый, Королевский синий, Синий, Голубой, Зеленый и Growing Light, с возможным отклонением от центральной длины волны на ±15 нм. Драйверы названных светодиодов выполнены с возможностью подачи энергии питания такой величины, чтобы уровень светового потока от соответствующих светодиодов был равным 0,94; 0,22; 0,57; 0,81; 0,89 от уровня светового потока, излучаемого светодиодом Growing Light, с возможным отклонением указанных значений энергии на ±30%. Спектр может быть сформирован набором однотипных светодиодов мощностью от 0,1 до 200 Вт каждый, с возможностью генерирования мощности светового потока, одинаковой для каждого отдельного типа спектра. Максимальные амплитуды излучения названных светодиодов имеют максимальное излучение на длинах волн соответственно 587, 437, 460, 490, 524 и 650 нм. Изобретение обеспечивает спектр излучения, соответствующий солнечному свету. 2 з.п. ф-лы, 8 ил., 3 табл.

Изобретение относится к осветительным устройствам, обеспечивающим освещение светом, максимально соответствующим спектру солнечного света, за счет использования светоизлучающих диодов. В светильнике, содержащем набор известных светодиодов с разными спектрами излучения, лежащими в диапазоне частот порядка 400-800 нм, снабженных драйверами питания, согласно изобретению использованы светодиоды, спектры излучения которых находятся в диапазоне 400-675 нм, при этом спектры использованных светодиодов перекрывают друг друга в разных спектральных участках диапазона предпочтительно на уровне 0,4-0,6 от максимальной амплитуды на центральной частоте излучения, причем использованы восемь типов светодиодов разного спектра мощностью от 0,1 до 200 Вт и более каждый, а излучаемый спектр включает спектры излучения таких светодиодов, как Теплый белый, Фиолетовый, Королевский синий, Синий, Голубой, Зеленый, Глубокий красный и Растительный свет, с возможным отклонением от центральной частоты на ±15 нм, при этом драйверы названных светодиодов выполнены с возможностью подачи энергии питания такой величины, чтобы уровень светового потока от соответствующих светодиодов был равным 1,25, 0,97, 0,24, 0,87, 1,02, 1,11 и 0,46 от уровня светового потока, излучаемого светодиодом Растительный свет, с возможным отклонением указанных значений энергии на ±30%. Кроме того, тип спектра сформирован набором однотипных светодиодов с возможностью генерирования мощности светового потока одинаковой для каждого отдельного типа спектра. Кроме того, названные светодиоды имеют максимальное излучение на частотах соответственно 587, 413, 437, 460, 490, 524, 664 и 650 нм. Изобретение обеспечивает светильнику спектр излучения, соответствующий солнечному свету в диапазоне 400-675 нм. 2 з.п. ф-лы, 6 ил., 3 табл.

Светильник, содержащий набор известных светодиодов с разными спектрами излучения, лежащими в диапазоне порядка 400-800 нм, снабженных драйверами, отличается тем, что спектры, составляющие набор отобранных светодиодов, перекрывают друг друга в разных спектральных участках диапазона, предпочтительно, на уровне 0,5 от максимальной амплитуды, причем использованы два теплых белых и один зеленый светодиоды с мощностью излучения 10 Вт каждый, синий, голубой, два светодиода полного спектра и по одному светодиоду глубокий красный и инфракрасный светодиоды с мощностью излучения 3 Вт каждый. Изобретение обеспечивает светильнику спектр излучения, соответствующий солнечному свету, при минимизации общего количества используемых светодиодов. 4 ил.

Изобретение относится к осветительным устройствам, обеспечивающим освещение растений светом, максимально соответствующим спектру солнечного света за счет использования светоизлучающих диодов. Светильник содержит набор известных светодиодов с разными спектрами излучения, лежащими в диапазоне частот порядка 400 - 800 нм, снабженных драйверами питания. Используются светодиоды, спектры излучения которых находятся в диапазоне 400 - 730 нм. Спектры использованных светодиодов перекрывают друг друга в разных спектральных участках диапазона, предпочтительно, на уровне 0,4-0,6 от максимальной амплитуды на центральной частоте излучения. Используются девять типов светодиодов разного спектра мощностью, обеспечивающей формирование светильником спектра излучения, близкого к солнечному свету. Излучаемый спектр включает спектры излучения таких светодиодов, как Теплый белый, Фиолетовый, Королевский синий, Синий, Голубой, Зеленый, Глубокий красный, Инфракрасный и Растительный свет. Драйверы названных светодиодов выполнены с возможностью подачи энергии питания такой величины, чтобы уровень светового потока от соответствующих светодиодов был равным 1,19; 0,95; 0,24; 0,85; 0,99; 1,08; 0,38 и 1,03 от уровня светового потока, излучаемого светодиодом Растительный свет. Тип спектра сформирован набором однотипных светодиодов, с возможностью генерирования мощности светового потока, одинаковой для каждого отдельного типа спектра. Названные светодиоды имеют максимальное излучение на частотах, соответственно, 587, 413, 437, 460, 490, 524, 664, 720 и 650 нм. Использование изобретения позволит обеспечить светильнику спектр излучения, соответствующий солнечному свету в диапазоне 400 - 730 нм. 2 з.п. ф-лы, 6 ил.

Изобретение относится к осветительным устройствам, обеспечивающим освещение растений светом, максимально соответствующим спектру солнечного света за счет использования светоизлучающих диодов. При освещении используются светодиоды, спектры излучения которых находятся в диапазоне 410–660 нм. Спектры использованных светодиодов перекрывают друг друга в разных спектральных участках диапазона, предпочтительно на уровне 0,4–0,6 от максимальной амплитуды на центральной частоте излучения. Использованы семь типов светодиодов разного спектра мощностью, обеспечивающей формирование светильником спектра излучения, близкого к солнечному свету. Излучаемый спектр включает спектры излучения таких светодиодов, как Теплый белый, Фиолетовый, Королевский синий, Синий, Голубой, Зеленый и Растительный свет. Драйверы названных светодиодов выполнены с возможностью подачи энергии питания такой величины, чтобы уровень светового потока от соответствующих светодиодов был равным 0,94; 0,77; 0,15; 0,66; 0,81; 0,89 от уровня светового потока, излучаемого светодиодом Растительный свет, с возможным отклонением указанных значений энергии на ±30%.Тип спектра сформирован набором однотипных светодиодов с возможностью генерирования мощности светового потока, одинаковой для каждого отдельного типа спектра. Названные светодиоды имеют максимальное излучение на частотах соответственно 587, 413, 437, 460, 490, 524 и 650 нм. Использование изобретения позволит обеспечить светильнику спектр излучения, соответствующий солнечному свету, в диапазоне 410–660 нм. 2 з.п. ф-лы, 6 ил., 3 табл.

Изобретение относится к изготовлению металлических порошков. Способ включает нагрев металлического материала до температуры его плавления лазерным излучением, формирование из расплава капель, их охлаждение в свободном полете в среде нейтрального газа до температуры ниже температуры плавления металлического материала и сбор частиц порошка. Нагрев металлического материала до температуры его плавления ведут лазерным излучением путем прорезывания образца металлического материала с перемещением в сторону нетронутого массива материала со скоростью, обеспечивающей образование в месте контакта с ним зоны расплава. Формирование из расплава капель осуществляют в направлении движения струи плазмы посредством ее напора и/или струи сжатого нейтрального газа. Сбор частиц порошка осуществляют в объеме уловителя порошка, расположенного со стороны образца металлического материала, противоположной размещению лазерной головки, для формирования лазерного излучения. Обеспечивается повышение эффективности производства металлического порошка, а также стабильность формы и фракционного состава порошка. 2 з.п. ф-лы, 2 ил., 1 пр.

Изобретение относится к изготовлению металлического порошка. Способ включает нагрев металла донора порошка до температуры его плавления, формирование из него капель металла и их охлаждение в среде нейтрального газа и сбор порошка. Поверхность образца металла донора порошка нагревают излучением лазера, которое перемещают в пределах площади поверхности образца металла донора порошка со скоростью, достаточной для формирования на ней ванны расплава, объем которой составляет от 10-5 до 10 мм3. Объем расплавленного металла из ванны расплава дробят и выдувают струей сжатого нейтрального газа с обеспечением свободного полета капель металла до их охлаждения ниже температуры плавления, при этом частицы порошка собирают в объеме уловителя порошка. Размер фракции порошка регулируют изменением мощности лазерного излучения, и/или фокусировкой лазерного луча, и/или скоростью перемещения луча лазера относительно поверхности образца металла донора, и/или длительностью воздействия лазерного излучения на образец метала донора, и/или давлением и скоростью струи сжатого нейтрального газа. Обеспечивается повышение эффективности производства металлического порошка. 3 ил.

Изобретение относится к изготовлению металлических порошков. Способ включает нагрев металла донора порошка до температуры его плавления, формирование из него капель металла и их охлаждение в среде нейтрального газа и сбор порошка. Поверхность образца металла донора порошка нагревают излучением лазера, которое перемещают в пределах площади поверхности образца металла донора со скоростью, достаточной для формирования на ней ванны расплава с объемом от 10-5 до 10 мм3. Объем расплавленного металла из ванны расплава дробят и выдувают струей сжатого нейтрального газа с обеспечением свободного полета капель металла до их охлаждения ниже температуры плавления. Частицы порошка собирают в объеме уловителя порошка. Обеспечивается стабильность формы и фракционного состава порошка, возможность регулирования среднего размера частиц и изготовления порошка с диаметром меньше 50 мкм. 1 з.п. ф-лы, 3 ил.

Устройство для передачи энергии автономному подводному аппарату содержит источник энергии на борту судна-носителя, кабель-трос, герметичный светодиодный излучатель высокой интенсивности, герметичную светоприемную панель. Излучатель на кабель-тросе опускают под воду и вводят в контакт со светоприемной панелью. Излучатель и светоприемная панель расположены навстречу друг к другу своими прозрачными слоями. Светоприемная панель преобразует свет в электрическую энергию, накапливаемую в аккумуляторных батареях автономного подводного аппарата. Обеспечивается надежная и экономичная передача энергии на борт подводного аппарата. 1 ил.

Устройство для передачи информации автономному подводному аппарату содержит источник информации, шифратор, кабель-трос, герметичный световой излучатель, дешифратор. Кабель-трос с излучателем находятся под водой. Шифратор переводит цифровые сигналы источника информации в последовательность световых импульсов излучателя на его прозрачной герметичной панели, которая входит в контакт с прозрачной герметичной приемной панелью. Приемная панель имеет одну индикаторную секцию и остальные информационные секции. Приемная панель подключена к дешифратору. Дешифратор подключен к бортовому компьютеру подводного аппарата. Обеспечивается быстрота и надежность передачи информации на борт подводного аппарата. 1 ил.

Изобретение относится к области биохимии

Изобретение относится к способу получения многофункциональных кремнийорганических металлсодержащих дендронов

Изобретение относится к области мониторинга деформации и термических процессов с использованием контрольно-измерительных систем на основе волоконных брэгговских решеток

Изобретение относится к области оптоэлектроники и может быть использовано в конструкциях оптических фильтров, предназначенных для обработки изменяющихся по времени оптического излучения или спеклового излучения в условиях медленных или однократных изменений обрабатываемого сигнала, вызванных неконтролируемым воздействием внешних факторов

 


Наверх