Патенты автора Будиновский Сергей Александрович (RU)

Изобретение относится к способу нанесения теплозащитного покрытия (ТЗП) на детали из сплава на основе никеля. На детали наносят жаростойкий металлический подслой вакуумным методом осаждения из сплава системы Ni-Cr-Al-Y-Me, причем Me - это Та, Hf и Re с суммарным содержанием от 5,0 до 8,5 мас.%. Проводят пескоструйную поверхностную обработку деталей, их нагрев в окислительной среде при температуре 550-850°С с формированием соединительного слоя на основе оксида алюминия и среднечастотное плазмохимическое магнетронное осаждение внешнего двойного керамического слоя с обеспечением анизотропной структуры. Внешний двойной керамический слой состоит из внутреннего керамического слоя на основе стабилизированного оксида циркония и внешнего керамического слоя, содержащего как минимум один оксид редкоземельного металла, формирующего с оксидом циркония в этом слое фазы со структурой пирохлор и/или флюорит в количестве до 15 мас.%. Обеспечивается повышение рабочей устойчивости поверхности деталей из жаропрочных никелевых сплавов и интерметаллидных никелевых сплавов с ТЗП до 1350°С длительно и до 1450°С кратковременно при шероховатости поверхности до 1,6-2,5 мкм. 4 ил., 1 табл., 1 пр.

Изобретение относится к области нанесения защитных покрытий. Может применяться для получения керамического слоя теплозащитных покрытий на изделия авиационной техники, преимущественно на рабочих и сопловых лопатках турбин из жаропрочных литейных сплавов. Устройство для нанесения покрытий методом магнетронного распыления содержит вакуумную камеру с оппозитными планарными магнетронными источниками распыления, механизм вращения и перемещения обрабатываемых изделий, систему подачи газов, систему нагрева и ионной очистки, систему откачки, систему оборотного водоохлаждения и систему электропитания с управляющим компьютером. Вакуумная камера разделена затворами на отсек загрузки, по меньшей мере один отсек напыления и отсек выгрузки. Отсек загрузки содержит систему нагрева, систему подачи инертного газа, систему ионной очистки обрабатываемых изделий и механизм вращения и перемещения изделий, в отсеке напыления размещена по крайней мере одна пара оппозитных планарных магнетронных источников распыления и система подачи инертного и реактивного газа. Механизм вращения и перемещения изделий обеспечивает перемещение обрабатываемых изделий по упомянутым отсекам. Нанесение покрытия осуществляют при напряжении разряда 450-550 В и расходе кислорода 5-8 л/ч. Обеспечивается повышение равномерности покрытия по толщине и повышение производительности процесса напыления. 2 н. и 3 з.п. ф-лы, 2 ил., 2 пр.

Изобретение относится к области нанесения ионно-плазменных покрытий, а именно к устройству и способу нанесения защитных покрытий. Устройство содержит по меньшей мере одну пару расположенных напротив друг друга вакуумно-дуговых испарителей с общим электроизолированным анодом для каждой пары и одну пару газоразрядных источников ионов, образующих кольцевую зону обработки изделий. Каждый испаритель выполнен с возможностью перемещения вдоль их оси расположения. Электроизолированный держатель обрабатываемых изделий выполнен в виде первого вала вращения, размещенного на оси кольцевой зоны обработки изделий, и второго вала вращения. Первый вал вращения коаксиально охвачен внешним валом, второй вал вращения и внешний соединены посредством передаточного механизма импульса вращения с первого вала вращения на второй вал вращения. Второй вал вращения имеет возможность перемещения вдоль радиуса кольцевой зоны обработки изделий и вокруг первого вала вращения. Положительный полюс источника смещения с электронным ключом подключен к корпусу вакуумной камеры. Технический результат заключается в обеспечении возможности нанесения на изделия с криволинейной поверхностью, в том числе лопатки турбин, блинки, блиски и сопловые блоки газотурбинных двигателей, различных габаритов, защитных и защитных упрочняющих покрытий из плазмы с высокой равномерностью толщины при снижении энергозатрат, а также в повышении производительности процесса нанесения покрытий и упрощении конструкции устройства. 2 н. и 6 з.п. ф-лы, 2 ил., 1 пр.

Изобретение относится к области металлургии и может быть использовано для защиты деталей от высокотемпературного окисления. Способ защиты деталей газовых турбин из никелевых сплавов включает осаждение в вакууме на внешнюю поверхность деталей первого слоя покрытия из сплава на основе никеля, содержащего, мас.%: гафний 0,5-3,0, алюминий 10,0-20,0, хром 5,0-10,0, никель – остальное. Осуществляют осаждение второго слоя из алюминиевого сплава, содержащего, мас.%: гафний 0,5-3,0, никель 10,0-20,0, алюминий – остальное. Затем осуществляют вакуумный отжиг. Техническим результатом изобретения является повышение жаростойкости покрытия при рабочих температурах деталей газовых турбин из никелевого сплава до 1250°C. 1 з.п. ф-лы, 4 табл., 3 пр.

Способ включает размещение изделия с жаростойким покрытием в камере распыления, заполненной смесью кислорода и инертного газа, нагрев изделия, магнетронное распыление мишени из сплава на основе циркония с образованием керамического слоя и термообработку изделия и отличается тем, что нагрев изделия осуществляют хотя бы частично потоком газоразрядной магнетронной плазмы до температуры 200-800°C и используют мишень из сплава циркония, иттрия, гадолиния и гафния следующего состава, мас.%: иттрий - 6-10, гадолиний - 6-10, гафний 3-7, цирконий - остальное. Достигается продолжительная теплозащита при температурах выше 1200°С.

Изобретение относится к области машиностроения и может быть использовано в авиационном и энергетическом турбостроении при ремонте лопаток и других деталей турбин. Способ включает обработку в электролите, содержащем неорганическую аммонийную соль и добавку водорастворимого вещества, при этом обработку ведут в электролитно-плазменном катодном режиме с электропитанием пакетами импульсов постоянного тока частотой 30-40 кГц с длительностью паузы между пакетами 4-10 мкс в электролите, содержащем в мас.%: фтористый аммоний 2-5; трилон Б 0,01-0,03 и воду - остальное. Технический результат: увеличение выхода годной продукции в процессе удаления покрытия и снижение энергопотребления процесса при сохранении или повышении скорости удаления покрытия. 1 табл.

Изобретение относится к области машиностроения и может быть использовано в авиационном и энергетическом турбостроении для нанесения теплозащитного покрытия на трактовую поверхность рабочих и сопловых лопаток турбины газотурбинного двигателя. Керамическое теплозащитное покрытие для изделий из жаропрочных литейных никелевых сплавов содержит, мас.%: Gd2O3 - 2-9; Y2O3 - 7-9 и ZrO2 - остальное. Техническим результатом изобретения является повышение в области рабочих температур 1100-1150°C термостойкости и коэффициента теплопроводности покрытия до 1 Вт/м·K. 1 з.п. ф-лы, 4 пр., 1 табл.

Изобретение относится к термической обработке турбинных лопаток, преимущественно выполненных из жаростойких сплавов на основе никеля. Способ включает нанесение защитного покрытия на поверхность отливок лопаток и их последующее горячее изостатическое прессование (ГИП). Перед нанесением защитного покрытия на поверхность отливок лопаток наносят по меньшей мере один слой керамики на основе тугоплавких окислов толщиной 0,1-2,0 мм с температурой плавления по меньшей мере на 50°С выше температуры ликвидуса сплава отливок лопаток. В качестве защитного покрытия используют жаростойкое металлическое покрытие с толщиной слоя 15-200 мкм. Защитное покрытие может быть выполнено из материала, выбранного из группы, включающей жаростойкий никелевый сплав, титан, хром. ГИП может быть выполнено до удаления керамического стержня, формирующего внутреннюю полость отливок лопаток. Внутренняя полость отливок лопаток перед проведением ГИП может быть заполнена керамическим порошком с температурой плавления по меньшей мере на 50°С выше температуры ликвидуса сплава отливок лопаток. Обеспечивается исключение образования измененного слоя у внешней поверхности лопаток, содержащего выделения топологически плотноупакованных (ТПУ) фаз при термической обработке. 3 з.п. ф-лы, 10 ил., 1 пр.

Изобретение относится к технологии полирования изделий из малоуглеродистых сталей с повышенным содержанием хрома и может быть использовано в авиационном и энергетическом машиностроении, в частности для финишной обработки лопаток компрессора. Способ включает погружение обрабатываемой детали в ванну с предварительно нагретым электролитом в виде раствора гидрокарбоната натрия или сульфата аммония, формирование разряда в пароплазменной области, образующейся между обрабатываемой деталью и электролитом, воздействие токами высокой частоты на поверхность детали, при этом в электролит вводят поверхностно-активное вещество в количестве не менее 1,0*10-4 об. %, а воздействие токами высокой частоты на поверхность детали осуществляют пакетами импульсов тока с длительностью пакета импульсов тока более 15 мкс и скважностью импульсов менее 85%, при этом обрабатываемая деталь является анодом. Техническим результатом является снижение энергетических затрат на единицу обрабатываемой поверхности, повышение экологичности и равномерности обработки поверхности деталей сложного профиля. 4 з.п. ф-лы, 2 табл., 2 пр.
Изобретение относится к области металлургии и машиностроения и может быть использовано в авиационном и энергетическом турбостроении для защиты деталей от высокотемпературного окисления, в том числе рабочих и сопловых лопаток газовых турбин из никелевых сплавов
Изобретение относится к области металлургии, а именно к способам получения жаростойких алюминидных покрытий, и может быть использовано в авиационном и энергетическом турбиностроении для защиты от высокотемпературного окисления внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных сплавов на основе никеля
Изобретение относится к области машиностроения и металлургии и может быть использовано в авиационном и энергетическом турбостроении при изготовлении рабочих лопаток турбин с монокристаллической структурой из жаропрочных литейных никелевых сплавов

Изобретение относится к области машиностроения и может быть использовано в энергетическом и авиационном турбостроении, преимущественно для защиты пера лопаток промышленных газотурбинных установок ГТУ от высокотемпературной коррозии
Изобретение относится к области машиностроения и металлургии и может быть использовано в энергетическом и авиационном газотурбиностроении для защиты пера лопаток турбин от высокотемпературного окисления и коррозии

Изобретение относится к области машиностроения и может быть использовано в энергетическом и авиационном турбостроении для защиты от коррозии и высокотемпературного окисления лопаток газовых турбин из жаропрочных никелевых сплавов
Изобретение относится к области машиностроения, а именно к способам обработки поверхности металлических изделий, и может быть использовано в турбостроении при изготовлении деталей ГТД
Изобретение относится к металлургии и может быть использовано в авиационном и энергетическом турбиностроении для защиты лопаток турбин от высокотемпературного окисления и сульфидной коррозии

Изобретение относится к области металлургической промышленности

Изобретение относится к установке для нанесения защитных покрытий и может найти применение для получения защитных покрытий на изделиях авиационной техники
Изобретение относится к области машиностроения и может быть использовано в авиационном и энергетическом турбостроении при изготовлении рабочих лопаток турбин из жаропрочных литейных никелевых сплавов
Изобретение относится к области машиностроения и может быть использовано в авиационном и энергетическом турбостроении при изготовлении рабочих лопаток турбин с монокристальной структурой из высокорениевых жаропрочных литейных никелевых сплавов

 


Наверх