Патенты автора Егоров Сергей Александрович (RU)

Изобретение относится к медицине, психиатрии, неврологии, предназначено для диагностики эпилепсии и пароксизмальных состояний при повреждениях головного мозга с патологической двигательной активностью. Интерпретируют двигательную активность конечностей пациента во время его сна по частоте, амплитуде и длительности периода сигнала, измеренного и зарегистрированного устройством, включающим акселерометрический датчик (АМД), закрепляемый на лодыжках и/или запястьях пациента, с числом пространственных осей измерения не менее трех. Фазе с характерной для эпилепсии двигательной активностью (ХЭДА) конечностей пациента предшествует фаза сна без двигательной активности (условно «нулевая»). Сама фаза ХЭДА состоит из четырех последовательных периодов: 1 - период зарождения ХЭДА, определяемый наличием колебаний с частотой не более 0.25 Гц, размахом амплитуды (peak-to-peak amplitude) до ±23% от «нулевой фазы», по крайней мере, по одной из пространственных осей измерения АМД, длительность периода не более 30 сек; 2 - период развития ХЭДА, определяемый наличием колебаний с частотой 0.25÷3 Гц, размахом амплитуды сигнала до ±90% от «нулевой фазы», по крайней мере, по одной из осей измерения АМД, длительность не более 20 сек; 3 - период затухания ХЭДА, определяемый наличием колебаний с частотой 3÷5 Гц, размахом амплитуды сигнала до ±5% от сигнала «нулевой фазы», по крайней мере, по одной из осей измерения АМД, длительность не более 15 сек; 4 - период прекращения ХЭДА, определяемый наличием колебаний с частотой 0.05÷0.2 Гц, практически без изменения амплитуды сигнала, характерного для 3-го периода, длительность не менее 60 сек. Способ обеспечивает эффективную диагностику эпилепсии и пароксизмальных состояний 2 пр., 2 ил.

Изобретение относится к области радиотехники, а именно к технике создания искусственных радиопомех, и может быть использовано для радиоподавления (РП) каналов связи (КС), в том числе использующих режим с псевдослучайной перестройкой рабочей частоты, априорная информация о загруженности рабочих частот которых не известна. Технический результат - разработка способа РП КС, в котором не требуется осуществлять обнаружение сигнала источника излучения каждый раз при смене его рабочих частот. В способе радиоподавления каналов связи принимают сигнал источника излучения в полосе частот, измеряют время, в течение которого сигнал существует на частоте. Выделяют минимальное значение временного интервала и формируют сигналы управления режимом передачи и структурой модулирующих напряжений. Модулируют, усиливают и излучают помеху на каждой из субполос за время существования сигнала источника излучений. 1 ил.

Изобретение относится к способу получения наномодифицированного полимерного композиционного материала, который может быть использован при изготовлении конструкционных композитных изделий в машиностроительной, авиационной, судостроительной, нефтегазовой и строительной промышленности. Композиционный материал получают формированием волокнистой ровинговой основы в количестве 90-100 в.ч. и ее пропиткой полимерным связующим на основе эпоксидно-диановой смолы в количестве 18-20 в.ч., при этом на поверхность волокон ровингвой основы перед ее пропиткой предварительно наносят слой кремнийорганического аппрета с углеродными нанотрубками путем обработки волокон 1-2% раствором кремнийорганического аппрета в этиловом спирте с углеродными нанотрубками в количестве 0,001-0,005 в.ч. углеродных нанотрубок и 0,1-0,2 в.ч. кремнийорганического аппрета. Волокна ровинговой основы обрабатывают раствором при ультразвуковой обработке раствора. Способ обеспечивает улучшение эксплуатационных свойств композиционных материалов. Полученный композиционный материал позволяет получать высокопрочные композитные изделия, в частности, при изготовлении арматуры, стержней и профилей с высоким модулем упругости и пределом прочности на растяжение. 1 з.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к области радиотехники, а именно к технике создания искусственных радиопомех, и может быть использовано для радиоподавления (РП) каналов связи (КС), в том числе использующих режим с псевдослучайной перестройкой рабочей частоты, априорная информация о загруженности рабочих частот которых не известна. Технический результат - разработка способа РП КС, в котором не требуется осуществлять обнаружение сигнала источника излучения каждый раз при смене его рабочих частот. В способе радиоподавления каналов связи принимают сигнал источника излучения в полосе частот, измеряют время, в течение которого сигнал существует на частоте. Выделяют минимальное значение временного интервала и формируют сигналы управления режимом передачи и структурой модулирующих напряжений. Модулируют, усиливают и излучают помеху на каждой из субполос за время существования сигнала источника излучений. 1 ил.

Изобретение относится к способу получения наномодифицированного полимерного композиционного материала, который может быть использован при изготовлении конструкционных композитных изделий в машиностроительной, авиационной, судостроительной, нефтегазовой и строительной промышленности. Композиционный материал получают формированием волокнистой ровинговой основы в количестве 90-100 в.ч. и ее пропиткой полимерным связующим на основе эпоксидно-диановой смолы в количестве 18-20 в.ч., при этом на поверхность волокон ровингвой основы перед ее пропиткой предварительно наносят слой кремнийорганического аппрета с углеродными нанотрубками путем обработки волокон 1-2% раствором кремнийорганического аппрета в этиловом спирте с углеродными нанотрубками в количестве 0,001-0,005 в.ч. углеродных нанотрубок и 0,1-0,2 в.ч. кремнийорганического аппрета. Волокна ровинговой основы обрабатывают раствором при ультразвуковой обработке раствора. Способ обеспечивает улучшение эксплуатационных свойств композиционных материалов. Полученный композиционный материал позволяет получать высокопрочные композитные изделия, в частности, при изготовлении арматуры, стержней и профилей с высоким модулем упругости и пределом прочности на растяжение. 1 з.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к способу получения наномодифицированного полимерного композиционного материала, который может быть использован при изготовлении конструкционных композитных изделий в машиностроительной, авиационной, судостроительной, нефтегазовой и строительной промышленности. Композиционный материал получают формированием волокнистой ровинговой основы в количестве 90-100 в.ч. и ее пропиткой полимерным связующим на основе эпоксидно-диановой смолы в количестве 18-20 в.ч., при этом на поверхность волокон ровингвой основы перед ее пропиткой предварительно наносят слой кремнийорганического аппрета с углеродными нанотрубками путем обработки волокон 1-2% раствором кремнийорганического аппрета в этиловом спирте с углеродными нанотрубками в количестве 0,001-0,005 в.ч. углеродных нанотрубок и 0,1-0,2 в.ч. кремнийорганического аппрета. Волокна ровинговой основы обрабатывают раствором при ультразвуковой обработке раствора. Способ обеспечивает улучшение эксплуатационных свойств композиционных материалов. Полученный композиционный материал позволяет получать высокопрочные композитные изделия, в частности, при изготовлении арматуры, стержней и профилей с высоким модулем упругости и пределом прочности на растяжение. 1 з.п. ф-лы, 1 ил., 2 табл.
Настоящее изобретение относится к способу получения высокооктановой добавки к автомобильному бензину на сульфокатионитном катализаторе в H+ форме из олигомеризата, получаемого из бутан-бутиленовой фракции на катализаторе БАК-70, путем этерификации метанолом. При этом предварительно перед этерификацией смесь олигомеризата и метанола, взятых в соотношении 24:1÷10:1 по массе, насыщают водородом при температуре 15-25°C и давлении 1,1-1,5 МПа, насыщенную водородом смесь подают на этерификацию и осуществляют процесс при температуре 65-75°C, под давлением 1,0-1,5 МПа с использованием в качестве катализатора макропористого сульфокатионита в H+ форме, содержащего Pd. Предлагаемое изобретение позволяет получить высокооктановую добавку без потери части олигомеризата. 6 табл., 3 пр.

Изобретение предназначено для непрерывного весового дозирования сыпучих материалов и может быть использовано, например, в химической, фармацевтической, металлургической и горнодобывающей промышленности. Изобретение направлено на повышение точности процесса дозирования, что обеспечивается за счет того, что осуществляют непрерывную подачу сыпучего материала на ленту транспортера объемным питателем, определяют показания весового датчика через равные промежутки времени, производят расчет весовой производительности, сравнение этой производительности с заданной производительностью, подачу управляющего сигнала на изменение производительности объемного питателя. При этом согласно изобретению производительность объемного питателя задают равной разнице заданной производительности и удвоенной погрешности производительности объемного питателя, измеряют неравномерность потока сыпучего материала на выходе объемного питателя, расчет весовой производительности осуществляют с учетом неравномерности распределения сыпучего материала на ленте транспортера, а разницу между расчетной и заданной производительностями весового дозатора устраняют путем подачи в поток материала, ссыпающегося с ленты транспортера, потока сыпучего материала, выходящего из дополнительного объемного питателя с максимальной производительностью, равной удвоенной погрешности дозирования объемного питателя. 2 н.п. ф-лы, 3 ил.

Изобретение относится к радиотехнике и может быть использовано в сверхширокополосных короткоимпульсных системах связи. Способ обнаружения сигналов без несущей заключается в том, что оцифрованный аналоговый сигнал делят на фрагменты, соответствующие числу элементов предварительно заданного вектора цифровой последовательности (ВЦП), инвертируют отсчеты фрагментов, номера которых определяют по предварительно заданному ВЦП, состоящему из N нулевых и единичных значений, причем значениям ВЦП, равным нулю, соответствуют фрагменты, значения отсчетов которых при инверсии полностью совпадают со значениями отсчетов фрагментов, соответствующих значениям ВЦП, равным единице, после чего формируют суммарную выборку, складывая в начале первые отсчеты всех фрагментов, потом вторые и в конце - последние, в качестве значения порогового уровня шума выбирают величину, равную удвоенному значению среднеквадратического отклонения отсчетов суммарной выборки для положительных и отрицательных значений отсчетов. Параметры сигнала оценивают, сравнивая выборки со значением порогового уровня шума, причем в качестве параметров сигнала выбирают максимальные отрицательное и положительное значения суммарной выборки, а решение об обнаружении сигнала принимают, когда хотя бы один из параметров по абсолютному значению превысит значение порогового уровня шума. Технический результат - повышение достоверности обнаружения. 2 з.п. ф-лы, 6 ил.

Изобретение относится к радиотехнике и может быть использовано в системах радиоконтроля, работающих в условиях аддитивных шумов высокой интенсивности

Изобретение относится к способам обнаружения сигналов

Изобретение относится к радиотехнике, а именно к способам обнаружения сигналов

Изобретение относится к способам обнаружения радиосигналов (PC)
Изобретение относится к области аналитического приборостроения для исследования и анализа веществ и преимущественно может быть использовано в целях испытаний, например, при проверке работоспособности приборов спектрометрии подвижности ионов, которые предназначены для обнаружения и идентификации паров следовых количеств органических веществ, прежде всего, наркотических, взрывчатых, психотропных, отравляющих или экологически опасных веществ

Изобретение относится к способу определения дефектов изготовления, сборки и установки магнитных систем, т.е

Изобретение относится к измерительной технике и может быть использовано при измерении физических величин с использованием дифференциальных датчиков на базе первичных измерительных преобразователей с раздельными электрическими выходами и неидентичными линейными характеристиками

Изобретение относится к технике создания искусственных помех и может быть использовано для подавления сигналов управления приемных устройств радиовзрывателей, запуск которых производится с помощью связных радиостанций
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх