Патенты автора Гречников Федор Васильевич (RU)

Изобретение относится к области металлургии, в частности к термической обработке алюминиевых сплавов. Способ термической обработки деталей из алюминиевого сплава В95пч включает нагрев деталей до температуры 140±5°С и старение в течение 2-8 часов, при этом одновременно с искусственным старением деталей из алюминиевого сплава их подвергают воздействию внешнего постоянного магнитного поля с напряженностью 7,0±1,0 кЭ. Изобретение направлено на повышение прочностных свойств сплава, в частности микротвердости, за счет создания однородной мелкодисперсной структуры. 2 табл., 1 пр.

Изобретение относится к области металлургии, а именно к термической обработке алюминиевых сплавов. Способ термической обработки деталей из алюминиевого сплава В95пч включает нагрев до температуры 140±5°C и старение в течение 2-8 часов, при этом одновременно с искусственным старением деталей из алюминиевого сплава их подвергают воздействию внешнего импульсного магнитного поля напряженностью с амплитудой напряженности 7,0±1,0 кЭ и частотой импульсного магнитного поля 2 Гц. Техническим результатом изобретения является повышение прочностных свойств материала, а также достижение наиболее однородной мелкодисперсной структуры. 2 табл., 1 пр.

Изобретение относится к обработке металлов давлением. Осуществляют поперечно-продольное выдавливание заготовки с получением стакана и утонение его стенки вытяжкой. Используют матрицу, полость которой имеет цилиндрический участок меньшего диаметра с размещенным в нем толкателем и цилиндрический участок большего диаметра с размещенным в нем пуансоном. Выдавливание и утонение стенки осуществляют путем штамповки заготовки по этапам. На первом этапе проводят первую стадию выдавливания заготовки, установленной на торце толкателя. На втором этапе путем перемещения матрицы в направлении пуансона и толкателя осуществляют заключительную стадию выдавливания и начало утонения стенки стакана. На третьем этапе путем движения матрицы по направлению к пуансону при неподвижном толкателе производят вытяжку стенки стакана с ее утонением. В результате обеспечивается повышение точности размеров изделия и сокращение количества операций при его изготовлении. 2 н.п. ф-лы, 4 ил.

Изобретение относится к цветной металлургии и может быть использовано в производстве тонких лент из сплавов систем Al-Mg. Способ получения лакированной ленты толщиной от 0,2 до 0,35 мм из алюминиевого сплава EN AW-5182 включает многопроходную горячую прокатку слитка сплава EN AW-5182 с получением полностью рекристаллизованной горячекатаной заготовки ленты, имеющей кубическую текстуру, и многопроходную холодную прокатку горячекатаной заготовки ленты. Последний проход горячей прокатки проводят в интервале температур 330-360°C при скорости деформации более 50 c-1 и со степенью деформации более 34%, при этом толщина полученной горячекатаной заготовки ленты в 13-16 раз превышает конечную толщину ленты, холодную прокатку горячекатаной заготовки ленты проводят в 7 проходов, причем на первом проходе холодную прокатку ведут со степенью деформации 30-35%, далее на пяти проходах холодную прокатку ведут с общей степенью деформации 84-87%, а на последнем проходе - со степенью деформации 22-26% и до достижения общей степени деформации свыше 90%, далее проводят стабилизационный отжиг ленты при температуре 90-100°С, нанесение лака на ленту и сушку при 220-250°С, а затем проводят смотку ленты в рулон массой не менее 10 т. Обеспечивается повышение механических свойств лент и снижение фестонистости до уровня менее 6%. 3 табл., 1 пр., 3 ил.

Изобретение относится к области цветной металлургии, в частности к сплавам на основе алюминия, которые могут быть использованы в аэрокосмической промышленности для изготовления поковок сложной формы. Высокопрочный термостойкий мелкозернистый сплав системы Al-Cu-Mn-Mg-Sc-Nb-Hf содержит, мас. %: Mg 0,8-1,2, Cu 1,6-1,9, Mn 1-1,2, Hf 0,5-0,6, Nb 0,26-0,3, Sc 0,26-0,3, примеси, в том числе железо, кремний, хром, ванадий, не более 0,2, алюминий - остальное, при этом сплав имеет микроструктуру со средним размером зерна не более 80 мкм и наноразмерными частицами термостабильных фаз Al3(ScxHf1-x) и Al3(NbyHf1-y) с кристаллической решеткой L12, которые равномерно распределены по объему зерен и имеют сферическую форму с размером не более 20 нм. Изобретение направлено на увеличение технологической пластичности и повышение механических свойств алюминиевого сплава. 2 н.п. ф-лы, 1 табл., 3 ил.

Изобретение относится к области металлургии, в частности к способу термомеханической обработки деформируемых термически неупрочняемых сплавов системы алюминий-магний и получению в результате обработки катаных изделий, таких как листы и плиты, и может быть использовано в судостроении, транспортном машиностроении, авиакосмической технике. Способ изготовления катаных изделий из термически неупрочняемого сплава системы алюминий-магний, содержащего по крайней мере два элемента из группы Mn, Zr, Сr, Ti, Sc, Tf, включает отливку слитков, гомогенизацию в три стадии: сначала при температуре 245-280°С в течение 2-10 часов, затем при температуре 320-360°С в течение 2-8 часов и при температуре 400-495°С в течение 1-12 часов, горячую прокатку с обжатием не более 20 мм за проход, отжиг после горячей прокатки по режиму: нагрев до 300-340°С с выдержкой 1-8 часов, охлаждение до температуры 225-250°С с выдержкой 1-8 часов и холодную деформацию. Изобретение направлено на получение катаных изделий из сплавов системы алюминий-магний, позволяющих сохранять в процессе эксплуатации высокие прочностные свойства и коррозионную стойкость. 2 н. и 4 з.п. ф-лы, 1 пр., 3 табл.

Изобретение относится к области металлургии, а именно к бесслитковой прокатке ленты между валками-кристаллизаторами. Устройство содержит металлоприемник (1), валки-кристаллизаторы (2) и индуктор (6) с магнитно-импульсной установкой, соединенный с металлоприемником. Металлоприемник с установленным на нем бандажом (3) с нихромовой обмоткой размещен в корпусе (4). Между корпусом и металлоприемником расположены теплоизоляционные плиты (5). Измельчение структуры направленным воздействием импульсного магнитного поля обеспечивает получение более тонкой ленты и повышение ее механических свойств. 4 з.п. ф-лы, 4 ил.

Изобретение относится к обработке металлов давлением и может быть использовано при получении деталей типа глубоких цилиндрических стаканов с конической придонной частью. Цилиндрическую заготовку, диаметр которой равен внешнему диаметру донной части стакана, деформируют путем перемещения через зазор между поверхностями конических участков пуансона и полости матрицы. На заготовку воздействуют подвижным толкателем. Пуансон и матрица при этом установлены неподвижно с соблюдением приведенного условия. На заключительной стадии деформирования перемещение металла ведут через зазор, имеющий ширину, обеспечивающую заданную толщину стенки конической части стакана. В устройстве пуансон установлен неподвижно, а матрица и выталкиватель имеют возможность независимого друг от друга перемещения. Матрица может быть зафиксирована относительно пуансона. В результате обеспечивается сокращение затрат энергии и повышение качества изделия. 2 н.п. ф-лы, 4 ил., 1 табл., 1 пр.

Изобретение относится к области металлургии, в частности к деформируемым наноструктурным сплавам на основе алюминия, содержащим медь и марганец, и может быть использовано для получения изделий, работающих при повышенных температурах. Сплав на основе алюминия содержит, мас. %: медь 0,5-2,0; марганец 0,3-1,6; цирконий 0, 1-0,5; бор 0,02-0,15; серебро 0,01-0,5; скандий 0,02-0,15; железо 0,01-0,3; кремний 0,01-0,35, неизбежные примеси до 0,1, из них каждой до 0,03, алюминий - остальное. Сплав имеет структуру, состоящую из алюминиевого твердого раствора и наночастиц вторичных алюминидов циркония и скандия, а бор присутствуют в структуре сплава в виде наночастиц AlB2, AlB12 со средним размером не более 50 нм. Сплав обладает повышенной термостойкостью, предел прочности (σв) после выдержки 250°C 400 часов составляет не менее 170 МПа, и электропроводностью не менее 55% IACS. 1 з.п. ф-лы, 2 табл.

Изобретение относится к области металлургии, в частности к деформируемым наноструктурным сплавам на основе алюминия и способам их получения для изделий, работающих при повышенных температурах. Сплав на основе алюминия содержит компоненты при следующем их соотношении, мас.%: медь 0,5-0,85; марганец 0,5-0,95; бор 0,02-0,15; цирконий 0,1-0,5; скандий 0,02-0,15; железо 0,01-0,3; кремний 0,01-0,15, неизбежные примеси 0-0,1, из них каждого 0-0,03, алюминий - остальное. При этом бор присутствует в структуре сплава в виде наночастиц АlВ2, AlB12, боридов переходных металлов со средним размером не более 50 нм, при этом сплав имеет электропроводность выше 54% IACS и предел прочности (σв) после 400 часов нагрева при 250°С не менее 160 МПа. По второму варианту сплав содержит, мас.%: медь 0,9-2,0, марганец 1,0-1,6, бор 0,02-0,15; цирконий 0,1-0,5; скандий 0,02-0,15; железо 0,01-0,3; кремний 0,01-0,15, неизбежные примеси 0-0,1, из них каждой 0-0,03, алюминий - остальное, при этом бор присутствует в структуре сплава в виде наночастиц АlВ2, AlB12, боридов переходных металлов со средним размером не более 50 нм, при этом сплав имеет предел прочности после 400 часов нагрева при 250°С до 230-280 МПа. Способ включает приготовление расплава при температуре на 100°С выше температуры ликвидуса сплава, при этом легирующие компоненты вводят в расплав в виде лигатур, имеющих мелкокристаллическую структуру со средним размером наночастиц не более 1500 нм, кристаллизацию и деформацию при воздействии магнитноимпульсного поля и/или слабоимпульсного тока. Техническим результатом изобретения является повышение термостойкости и электропроводности сплава. 4 н. и 4 з.п. ф-лы., 2 табл., 1 пр.

Изобретение относится к обработке металлов давлением и может быть использовано для получения нанокристаллической структуры металла

Изобретение относится к обработке металлов давлением, в частности к закреплению теплообменных труб в трубных решетках теплообменных аппаратов с образованием неразъемных механических соединений

Изобретение относится к обработке давлением, в частности к закреплению труб в трубных решетках теплообменных аппаратов

Изобретение относится к обработке давлением, в частности к получению труб с профилированными законцовками с использованием эффекта локализованного направленного пластического деформирования материала трубы

Изобретение относится к обработке металлов давлением, в частности к изготовлению прокаткой плакированных листов и лент из алюминиевых сплавов

Изобретение относится к обработке металлов давлением и может быть использовано при закреплении тонкостенных труб малого диаметра в трубных решетках теплообменных аппаратов с использованием направленного пластического деформирования материала трубы

 


Наверх