Теплопрочный электропроводный сплав на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым наноструктурным сплавам на основе алюминия, содержащим медь и марганец, и может быть использовано для получения изделий, работающих при повышенных температурах. Сплав на основе алюминия содержит, мас. %: медь 0,5-2,0; марганец 0,3-1,6; цирконий 0, 1-0,5; бор 0,02-0,15; серебро 0,01-0,5; скандий 0,02-0,15; железо 0,01-0,3; кремний 0,01-0,35, неизбежные примеси до 0,1, из них каждой до 0,03, алюминий - остальное. Сплав имеет структуру, состоящую из алюминиевого твердого раствора и наночастиц вторичных алюминидов циркония и скандия, а бор присутствуют в структуре сплава в виде наночастиц AlB2, AlB12 со средним размером не более 50 нм. Сплав обладает повышенной термостойкостью, предел прочности (σв) после выдержки 250°C 400 часов составляет не менее 170 МПа, и электропроводностью не менее 55% IACS. 1 з.п. ф-лы, 2 табл.

 

Изобретение относится к области металлургии, в частности к деформируемым наноструктурным сплавам на основе алюминия, меди, марганца, циркония, скандия, железа, кремния и способам их изготовления для изделий, работающих при повышенных температурах. В частности, сплав может быть использован в авиации, космонавтике, автомобилестроении для изделий электротехнического назначения, где требуются сочетания достаточной повышенной прочности, теплопрочности и электропроводности.

Известные сплавы системы Al-Cu-Mn с высоким содержанием меди (Машиностроение. Энциклопедия в 40 т. т.II-3. Цветные металлы и сплавы. М.: Машиностроение, 2001, с. 144-156). Это сплавы Д20, 1201, Д21, 01205 с 5,8-7,0 мас. % меди. Они обладают электропроводностью не выше 30-35% IACS.

Известен сплав по патенту РФ №2287600, МПК C22C 21/12 опубл. 20.11.2006, содержащий медь, марганец, цирконий и ванадий, включающий алюминиевый твердый раствор и вторичные алюминиды, отличающийся тем, что он дополнительно содержит скандий при следующем соотношении компонентов, мас. %: медь 1,2-2,4; марганец 1,2-2,2; цирконий 0,5-0,6; ванадий 0,01-0,15; скандий 0,01-0,2; алюминий - остальное. После 100 часов выдержки сплав имеет предел прочности при 350°C выше 30 МПа. При относительно высоком пределе прочности после 1-20 мин отжига при 200-410°C, равным 300 МПа, сплав обладает низкой электропроводностью - ниже 48% IACS.

Наиболее близким к заявленному объекту является сплав, на основе алюминия, патент РФ №2446222, МПК C22C 21/14, опубл. 27.03.2012, содержащий компоненты при следующем соотношении, мас. %: медь 0,9-1,9; марганец 1,0-1,8; цирконий 0,2-0,64; скандий 0,01-0,12; железо 0,15-0,5; кремний 0,05-0,15; алюминий - остальное; наночастицы фазы Al3(Zr, Sc) со средним размером не более 20 нм, электропроводность превышает 53% IACS, временное сопротивление σв после 100 час при 300°C превышает 320 МПа.

Недостатком данного сплава, несмотря на многие преимущества, является недостаточная прочность при температуре 250°C и выдержке в течение 400 час и электропроводность (53% IACS).

В основу изобретения поставлена задача - создать новый наноструктурный деформируемый сплав на основе алюминия, который обладает большей теплостойкостью и/или электропроводностью по сравнению со сплавом-прототипом для разных полуфабрикатов и изделий.

Поставленная задача решается за счет того, что теплостойкий электропроводный сплав на основе алюминия, содержащий медь, марганец, цирконий, скандий, железо и кремний, со структурой, содержащей алюминиевый твердый раствор и наночастицы вторичных алюминидов циркония и скандия Al3 (Zr,Sc), отличается тем, что он дополнительно содержит серебро и бор при следующем соотношении компонентов, мас. %:

медь 0,5-2,0
марганец 0,3-1,6
бор 0,02-0,15
цирконий 0,1-0,5
серебро 0,1-0,5
скандий 0,02-0,15
железо 0,01-0,30
кремний 0,1-0,35
неизбежные примеси 0-0,01, из них каждой 0-0,03
алюминий остальное,

причем бор присутствует в структуре в виде наночастиц AlB2, AlB12 со средним размером не более 50 нм, при этом сплав имеет электропроводность не менее 55% IACS и предел прочности после 400 часов при 250°C не менее 170 МПа. Сплав может дополнительно содержать, мас. %: кобальт 0,1-0,45, и/или никель 0,1-0,35, и/или кадмий 0,1-0,3, и/или РЗМ 0,001-0,1, и/или германий 0,05-0,3.

При этом бор образует устойчивые сегрегации в приграничных областях на дефектах кристаллической решетки, повышая способность сплава к деформации, изменяя кинетику старения. Для более стабильного увеличения теплостойкости сплав может дополнительно содержать указанные выше содержания: кобальта и/или никеля и/или кадмия, и/или РЗМ, и/или германия.

Сплав может быть приготовлен в виде различных литых и деформированных полуфабрикатов (листы, шины, штамповка, проволока для бортовых проводов и других применений), технология изготовления которых включает приготовление расплава при температуре, превышающей температуру ликвидуса на 100°C.Компоненты вводятся в расплав в виде лигатур с мелкокристаллической структурой, со средним размером наночастиц не более 1300 нм. При использовании лигатуры Al-B-Ti или Al-Cu-Mn (Ti) содержание титана в расплаве выдерживается не более 0,03 мас. %.

Кроме того, кристаллизацию литой заготовки и ее деформацию осуществляют при воздействии магнитно-импульсного поля и/или слабоимпульсного тока для обеспечения требуемого размера наночастиц и теплопрочности.

Для обеспечения литой структуры ближе к деформируемой выдерживаются высокие температуры 900-800°C при кристаллизации.

Марганец, цирконий и кобальт замедляют распад твердого раствора при высоких температурах и замедляют процесс рекристаллизации. Марганец и медь в указанных концентрациях вызывают образование дисперсоидов, обеспечивающих основные требования по прочности и теплопроводности. Их увеличение снижает электропроводность. Цирконий и скандий способствуют образованию наночастиц и вносят свой вклад в достижение требуемой прочности при повышенных температурах. Увеличение их содержания снижает электропроводность. Небольшие концетрации марганца повышают длительную прочность при температурах 250-300°C.

Железо и кремний также снижают электропроводность, но в виде совместных соединений с марганцем эвтектического типа Al (Fe, Mn) Si способствуют образованию структуры, повышающей прочность сплава.

Бор в виде наночастиц с алюминием и в виде боридов с переходными металлами повышает электропроводность сплава.

Примеры выполнения заявленного материала.

Сплавы были приготовлены в электрической печи сопротивления в алундовых тиглях при температуре расплава на 100°C выше линии ликвидуса. В качестве шихты использовали алюминий (99,9%), медь (99,9%) и мелкозернистые лигатуры: двойные Al-Mn, Al-Zn, Al-Sc, Al-Si, Al-Fe, тройные лигатуры Al-B-Ti и/или Al-Cu-Mn (Ti). Составы сплавов даны в таблице 1. Круглые слитки отливали в цилиндрическую изложницу. Магнитно-импульсные поля (МИЛ) применяли для перемешивания расплава, слабые импульсы тока при кристаллизации.

Далее образцы отжигались при 450°C±10° в течение 4 часов и осаживались до 60-70%), замеряли твердость по Бринеллю и электропроводность.

Твердость по Бринеллю измеряли по ГОСТ 9012-59 с переводом на предел прочности. Электропроводность измеряли по ГОСТ 27333-87 вихретоковым методом.

Как видно из анализа таблиц 1 и 2, составы №1 и №2 отличаются более высокой электропроводностью, а составы 3 и 4 - более высоким пределом прочности после выдержки в течение 400 час. при 250°C по сравнению с прототипом (пат. №2446222).

Предлагаемый наноструктурный деформируемый сплав на основе алюминия обладает большей теплостойкостью или электропроводностью по сравнению с прототипом и содержит вариант с более высокой электропроводностью при относительно низкой теплостойкости и с более высокой теплостойкостью наряду с более низкой электропроводностью по сравнению с прототипом.

1. Теплостойкий электропроводный сплав на основе алюминия, содержащий медь, марганец, цирконий, скандий, железо и кремний, со структурой, содержащей алюминиевый твердый раствор и наночастицы вторичных алюминидов циркония и скандия Al3 (Zr,Sc), отличающийся тем, что он дополнительно содержит серебро и бор при следующем соотношении компонентов, мас. %:

медь 0,5-2,0
марганец 0,3-1,6
бор 0,02-0,15
цирконий 0,1-0,5
серебро 0,01-0,5
скандий 0,02-0,15
железо 0,01-0,30
кремний 0,1-0,35
неизбежные примеси до 0,1, из них каждой до 0,03
алюминий остальное,

причем бор присутствуют в структуре в виде наночастиц AlB2, AlB12 со средним размером не более 50 нм, при этом сплав имеет электропроводность не менее 55% IACS и предел прочности после 400 часов при 250°C не менее 170 МПа.

2. Сплав по п. 1, отличающийся тем, что он дополнительно содержит мас. %: кобальт 0,1-0,45, и/или никель 0,1-0,35, и/или кадмий 0,1-0,3, и/или РЗМ 0,001-0,1, и/или германий 0,05-0,3.



 

Похожие патенты:
Изобретение относится к области металлургии сплавов, в частности деформируемых термически упрочняемых алюминиевых сплавов системы Al-Cu-Mg-Ag, предназначенных для использования в качестве высокопрочных конструкционных материалов в авиационно-космической промышленности.
Изобретение относится к области металлургии, в частности к высокопрочным сплавам пониженной плотности с повышенной вязкостью разрушения на основе системы алюминий-медь-литий, и может быть использовано для изготовления элементов конструкций в авиакосмической промышленности, таких как лонжероны, балки, шпангоуты и т.д.

Изобретение относится к области металлургии, а именно к высокоресурсным деформируемым термически упрочняемым свариваемым алюминиевым сплавам пониженной плотности с высокими характеристиками вязкости разрушения и прочности, в частности системы Al - Cu - Li, используемым в качестве конструкционных материалов в изделиях авиакосмической техники.

Изобретение относится к области цветной металлургии, а именно к производству фасонных отливок из сплава на основе алюминия, применяемых в качестве нагруженных деталей, длительно работающих при температурах до 300°C в авиационной, автомобильной и других отраслях промышленности.

Алюминий-медный сплав для литья, содержащий по существу нерастворимые частицы, которые занимают междендритные области сплава, и свободный титан в количестве, достаточном для измельчения зернистой структуры в литейном сплаве.

Изобретение относится к области металлургии, в частности к деформируемым наноструктурным сплавам на основе алюминия и способам их получения для изделий, работающих при повышенных температурах.

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, и может быть использовано при получении изделий, работающих в диапазоне температур до 350°С.
Изобретение относится к металлургии литейных сплавов, в частности к антифрикционным сплавам на основе алюминия, работающим в условиях трения скольжения. Антифрикционный сплав на основе алюминия содержит основные компоненты в следующем соотношении, мас.%: кремний - 12-15, медь - 3-5, алюминий - остальное, и имеет структуру, содержащую кристаллы эвтектического кремния глобулярной формы размером от 2 до 8 мкм.

Изобретение относится к продуктам из алюминиевых сплавов и способам их изготовления. .
Изобретение относится к металлургии и может быть применено для получения алюминиево-медных лигатур. .

Изобретение может быть использовано при получении паяных конструкций из алюминия и его сплавов. Припой содержит компоненты в следующем соотношении, мас.%: кремний 8-13, медь 0,1-10, германий 1,5-8, железо 0,5-3, хром 0,1-2,1, марганец 0,5-3, кобальт 0,001-0,8, молибден 0,001-0,8, стронций 0,001-0,2, бериллий 0,001-0,1, титан 0,001-0,1, натрий 0,001-0,2 и ванадий 0,001-0,2, алюминий остальное. Суммарное содержание меди и германия не превышает 14 мас.%. Отношение содержания железа к марганцу составляет 1:1. Отношение содержания хрома к железу составляет от 1:1 до 1:1,2. При вакуумной пайке припой дополнительно содержит магний в количестве 0,1-1 мас.%. Изобретение обеспечивает понижение температуры плавления припоя, повышение прочности паяных конструкций, что позволяет увеличить срок их службы. 1 з.п. ф-лы, 2 табл., 3 пр.

Изобретение может быть использовано при получении паяных конструкций из алюминия и его сплавов. Припой содержит компоненты в следующем соотношении, мас. %: кремний 5-13, медь 4-7, цинк 4-7, никель 0,5-3, марганец 0,3-3, железо 0,3-3, по меньшей мере один элемент из группы, включающей стронций 0,001-0,2, бериллий 0,001-0,1, титан 0,001-0,1, натрий 0,001-0,2 и ванадий 0,001-0,2, остальное - алюминий. Отношение содержания железа к марганцу составляет от 1:1 до 1:1,1. Отношение содержания никеля к железу составляет не более 1:2. При вакуумной пайке припой дополнительно содержит магний в количестве 0,1-1 мас. %. При пайке с длительным термическим циклом припой дополнительно содержит, мас.%: кобальт 0,001-0,8 и молибден 0,001-0,8. Технический результат заключается в понижении температуры плавления припоя, повышении прочности и коррозионной стойкости получаемых паяных конструкций из алюминиевых сплавов, что обеспечивает повышение их срока службы. 2 з.п. ф-лы, 2 табл., 3 пр.

Изобретение относится к массивным изделиям из деформируемого алюминиевого сплава серии 2ххх. Изделие из алюминиевого сплава, полученное обработкой давлением и имеющее конечную толщину по меньшей мере 25,4 мм, выполнено из алюминиевого сплава, содержащего, в вес.%: от 3,00 до 3,80 Cu, от 0,05 до 0,35 Mg, от 0,975 до 1,385 Li, причем -0,3×Mg-0,15Cu+1,65≤Li≤-0,3×Mg-0,15Cu+1,85, от 0,05 до 0,20 Zr, от 0,20 до 0,50 Zn, от 0,10 до 0,50 Mn, вплоть до 0,12 Si, вплоть до 0,15 Fe, вплоть до 0,15 Ti, вплоть до 0,05 любой примеси, при сумме примесей, не превышающей 0,15, остальное - алюминий. Изобретение направлено на достижение улучшенного сочетания прочности и вязкости. 24. з.п. ф-лы, 3 пр., 14 табл., 22 ил.

Изобретение относится к порошковой металлургии. Способ получения порошка квазикристаллического материала системы Al-Cu-Fe включает перемешивание порошков алюминия, меди и железа при соотношении компонентов, соответствующем области существования квазикристаллической фазы сплава системы Al-Cu-Fe, нагрев полученной смеси в камере в бескислородной атмосфере с последующим измельчением спека до получения порошка заданной дисперсности. Нагрев смеси производят до температуры 600-700°С, обеспечивающей инициализацию экзотермического процесса самопроизвольного формирования квазикристаллической фазы сплава, при этом измеряют текущую температуру нагрева в камере и температуру нагрева смеси порошков. При превышении температуры смеси порошков над текущей температурой нагрева в камере проводят отжиг при температуре 800-1300°С с обеспечением стабилизации квазикристаллической фазы сплава по всему объему смеси порошков. Обеспечивается получение качественного порошка квазикристаллического материала. 5 з.п. ф-лы, 1 ил., 1 табл, 4 пр.
Наверх