Патенты автора Коссый Игорь Антонович (RU)

'Изобретение относится к химии, в частности к устройствам для генерации микроволновых плазменных факелов с целью углекислотной конверсии метана в синтез-газ. Устройство содержит источник микроволновой энергии и рабочую камеру, при этом на одном торце рабочей камеры выполнено входное окно, через которое вводят микроволновое излучение, а на другом торце камеры размещены патрубки откачки и ввода рабочей среды. В камере на противоположной стороне от окна размещен инициатор, выполненный в виде матрицы из направленных навстречу микроволновому излучению проволочек диаметром 1-1,5 мм с шагом 3-4 мм и длиной 1-1,5 см, а радиальный размер инициатора больше или равен диаметру входного окна. Технический результат заключается в снижении теплового воздействия на инициатор и увеличении мощности микроволнового излучения. 1 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к химии, в частности к устройствам для генерации микроволновых плазменных факелов с целью углекислотной и паровой и комбинированной конверсии метана в синтез-газ. В способе микроволновой плазмохимической конверсии метана в синтез-газ создают давление в рабочей камеры до 0,1-0,5 мм рт. ст., подают в рабочую камеру метан до давления 740-750 мм рт. ст. и воду в количестве 0,9-1 см3. Затем рабочую камеру прогревают до температуры 120-130°C, вводят через окно микроволновое излучение для образования плазмы и заполняют плазмой весь объем рабочей камеры. Устройство микроволновой плазмохимической конверсии метана в синтез-газ содержит источник микроволновой энергии, рабочую камеру с соотношением внутренних размеров камеры диаметра и длины 0,4<Dk/Lk<0,3 и расположенный на внешней поверхности рабочей камеры нагревательный элемент, соединенный через термопару с терморегулятором. На одном торце рабочей камеры выполнено входное окно с отношением его диаметра к диаметру рабочей камеры 0,8<Do/Dk<1. На другом торце камеры размещены патрубки откачки и ввода рабочей среды. В камере на противоположной стороне от окна размещен инициатор. Техническим результатом изобретения является высокая эффективность конверсии метана в синтез-газ, повышение производительности и снижение теплового воздействия на конструктивные элементы за счет определенного конструктивного выполнения и особенностей образования и развития плазмы. 2 н. и 5 з.п. ф-лы, 1 ил.

Изобретение относится к получению нанодисперсного порошка молибдена. Способ включает восстановление гексафторида молибдена водородом в реакторе под воздействием сверхвысокочастотного разряда. Реактор заполняют газовой смесью, состоящей из гексафторида молибдена и водорода, мольная доля которого составляет не менее трех четвертей от общего объема газовой смеси, и герметизируют. В качестве сверхвысокочастотного разряда используют неравновесный сверхвысокочастотный разряд поверхностного типа в импульсном периодическом режиме. Обеспечивается получение однородного нанодисперсного порошка молибдена. 3 з.п. ф-лы, 1 табл., 3 пр.

Изобретение относится к нанотехнологии и может быть использовано при изготовлении СВЧ-устройств, имеющих покрытия, позволяющие снизить коэффициент вторичной эмиссии электронов. Сначала поверхность пластины обрабатывают с помощью разрядов и создают на её поверхности рельеф. После этого нагревают поверхность пластины до 50-60°C, покрывают её слоем коллоидного раствора углерода в спирте и испаряют его в потоке воздуха, нагретого до температуры 50-60°C до образования пленки толщиной 1-2 мкм. Процессы покрытия поверхности пластины слоем коллоидного раствора углерода в спирте периодически повторяют. Полученные покрытия позволяют подавить эффект лавинного размножения вторичных электронов при взаимодействии СВЧ-излучения с обработанной поверхностью. Свойства покрытий при их хранении в атмосфере воздуха при нормальном атмосферном давлении в течение 1-2 месяцев не меняются. 2 з.п. ф-лы, 1 ил.

Изобретение может быть использовано при получении покрытий, уменьшающих коэффициент вторичной электронной эмиссии, выращивании алмазных плёнок и стёкол, элементов, поглощающих солнечное излучение. Коллоидный раствор наноразмерного углерода получают путём подачи органической жидкости - этанола, в камеру с электродами, инжектирования инертного газа в межэлектродное пространство, формирования высокотемпературного плазменного канала в пузырьках газа, содержащих пары органической жидкости. Высокотемпературный плазменный канал имеет следующие параметры: температура тяжёлых частиц 4000-5000К, температура электронов 1,0-1,5 эВ, концентрация заряженных частиц (2-3)·1017 см3, диаметр плазменного канала сотни микрон. Затем быстро, в течение нескольких микросекунд, осуществляют охлаждение. Техническим результатом является простота, возможность получения наночастиц различного типа. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области получения нанодисперсных порошков неорганических материалов и соединений. Плазмохимические реакции инициируют импульсным микроволновым разрядом, воздействующим на исходные реагенты, в качестве которых используют смесь порошков титана и бора в атмосфере азота, при этом в качестве исходных реагентов используют порошок аморфного бора с размером частиц 1 мкм-100 мкм и порошок титана с размером частиц 1 мкм-100 мкм, причем используется микроволновой разряд мощностью от 50 кВт до 500 кВт и длительностью импульса от 100·10-6 с до 100·10-3 с, а рабочее давление азота составляет от 0,1 до 1 атмосферы. В результате протекания плазмохимических реакций совместно образуются два целевых продукта - нанодисперсные порошки диборида титана и нитрида бора различных форм и размеров. 1 з.п. ф-лы, 8 ил.

Изобретение относится к области химии. Метан-водяную смесь разделяют на два потока. Один поток газа направляют в устройство для подачи воды, смешивают с водным аэрозолем, затем соединяют с другим потоком и подают смесь на вход в центральный электрод микроволнового плазматрона, осуществляя регулирование расхода потоков. В струе метан-водяной смеси формируют микроволновый плазменный факел. Изобретение позволяет упростить процесс. 1 ил.

Изобретение относится к газовой и химической отраслям промышленности и предназначено для очистки газов от твердых, жидких, паро- и газообразных неорганических и органических веществ, деструкции и конверсии газов
Изобретение относится к способу переработки токсичных жидких отходов, который обеспечивает утилизацию образующихся при уничтожении химического оружия токсичных жидких отходов, таких же отходов различных производств и в местах применения веществ со фторсодержащими компонентами, содержащих калиевую соль плавиковой кислоты

Изобретение относится к авиационному и энергетическому двигателестроению и химическому машиностроению

Изобретение относится к области приборостроения

 


Наверх