Патенты автора Потапов Вадим Владимирович (RU)

Изобретение относится к строительству, в частности к составам бетонных смесей, и может быть использовано для монолитного бетонирования тонкостенных конструкций подземных сооружений. Бетонная смесь содержит, мас.%: портландцемент ЦЕМ II/А-Ш 32,5Б 15,2-18,5, суперпластификатор Master Glenium 0,698-1,1, нанокремнезем в аморфном состоянии с размером частиц 5-100 нм 0,002-2,0, песчаную фракцию отсева бетонного лома крупностью 0,16-0,325 мм 65,0-69,3, алюмосиликатную добавку с общим содержанием оксидов кремния и алюминия 70 мас.%, для изготовления которой золошлаковую смесь подвергают дезинтеграции с получением фракции размером до 10 мм, которую очищают от недожога и железосодержащих компонентов, 5,0-5,4, воду - остальное. Алюмосиликатная добавка содержит оксид кремния в количестве 50 мас.% и оксид алюминия в количестве 20 мас.%. Технический результат – повышение прочности при сжатии и морозостойкости бетона, утилизация техногенных отходов. 1 з.п. ф-лы, 3 табл.
Изобретение относится к области сельского хозяйства, в частности к садоводству. Способ включает обработку растений в фазах первых 4-5 листьев и бутонизации – цветения с применением препарата, содержащего крезацин и гидротермальный нанокремнезем. Для некорневой обработки яблонь при фиксированном расходе препарата по массе сухих компонентов 15 г/га и объемном расходе водных рабочих растворов препарата 300 л/га используют составы с массовым содержанием крезацина и гидротермального нанокремнезема в диапазонах 5,0-95,0 % и 95,0–5,0 % соответственно. Способ позволяет повысить урожайность и качество плодов яблонь по химическому составу с повышением экологичности. 2 табл.
Изобретение относится к области сельского хозяйства, в частности к овощеводству, и может найти применение при некорневой обработке огурцов в условиях открытого и защищенного грунтов. Способ включает некорневую обработку растений в фазах первых 4-5 листьев и бутонизации – цветения с применением препарата бинарного состава, содержащего крезацин и гидротермальный нанокремнезем, при фиксированном его расходе по массе сухих компонентов 15 г/га и объемном расходе водных рабочих растворов препарата 300 л/га. Используют составы с массовым содержанием крезацина и гидротермального нанокремнезема в диапазонах 5,0-95,0 % и 95,0-5,0 %, соответственно, относительно общего содержания компонентов. Способ позволяет расширить возможности применения, увеличить урожайность, повысить качество плодов и повысить их экологичность для питания. 2 табл.
Изобретение относится к области сельского хозяйства и может найти применение при некорневой обработке овощей семейства пасленовые в условиях защищенного и открытого грунта. Способ повышения урожайности овощей включает некорневую обработку растений в фазах первых 4-5 листьев и бутонизации-цветения с применением бинарного состава, содержащего крезацин и гидротермальный нанокремнезем, при этом для некорневой обработки овощей семейства пасленовые при фиксированном расходе препарата по массе 15 г/га и объемном расходе водных рабочих растворов препарата 300 л/га используют составы с массовым содержанием крезацина и гидротермального нанокремнезема в диапазонах 5,0-95,0% и 95,0–5,0%, соответственно, относительно общего содержания компонентов. Предлагаемый способ повышения урожайности позволяет повысить качество плодов овощей по химическому составу с повышением экологичности продукции для питания на основе овощного сырья. 2 табл.
Изобретение относится к области сельского хозяйства, в частности к растениеводству. Способ включает использование гидротермального нанокремнезема в обработке. Семена томата перед посевом замачивают на 2 ч в водном золе гидротермального нанокремнезема с его концентрацией в рабочих растворах в диапазоне 0,0005%-0,1%. Проращивание семян осуществляют при комнатной температуре 22°С с поддержанием их увлажнения водой. Способ обеспечивает расширение возможностей использования водных золей нанокремнезема гидротермального происхождения для томатов с повышением энергии прорастания, всхожести семян, активации роста, продуктивности с реализацией технологий получения проросших семян для биотехнологий получения ростков для здорового питания, в качестве предпосевной обработки семян для теплиц и открытого грунта, а также для селекции с получением новых высокопродуктивных сортов, отзывчивых на наноразмерный кремнезем. 2 табл., 6 пр.
Изобретение относится к области сельского хозяйства, в частности к растениеводству, и может найти применение в селекции при отборе перспективных биотипов растений, а также в технологиях получения пророщенных семян и первичной микрозелени для здорового питания. Способ включает предпосевную обработку семян гидротермальным нанокремнеземом с использованием после посева светодиодного монохроматического освещения. Перед посевом семена предварительно замачивают 120 минут в водном золе гидротермального нанокремнезема c концентрацией 0,05% с последующим посевом и 10-суточным проращиванием в стандартных условиях при комнатной температуре и увлажнении семян. В качестве источников света применяют монохроматическое непрерывное освещение светодиодами УФ-света с длиной волны 380 нм, или синего света с длиной волны 440 нм, или зеленого света с длиной волны 525 нм, или красного света с длиной волны 660 нм при генерации фотонов низкой интенсивности 0,44 мкмоль/(м2⋅с), 6,52 мкмоль/(м2⋅с), 1,44 мкмоль/(м2⋅с) и 2,36 мкмоль/(м2⋅с), соответственно, на уровне подложки с семенами с получением первичной микрозелени. Способ обеспечивает расширение возможностей использования светодиодного освещения от УФ-света до красной области с повышением энергии прорастания и всхожести семян свеклы столовой, продуктивности её ростков при 10-суточном проращивании, и получение первичной микрозелени. 3 табл.
Изобретение относится к области сельского хозяйства, в частности к растениеводству и биофотонике, и может найти применение в селекции при отборе перспективных биотипов растений, отзывчивых на искусственное светодиодное освещение. Способ включает обработку семян гидротермальным нанокремнеземом с использованием светодиодов, генерирующих фотоны низкой интенсивности. Перед посевом семена редиса предварительно замачивают на 2 часа в водном золе гидротермального нанокремнезема концентрации 0,005% с последующим посевом на подложку из минеральной ваты в виде пластин 20×20 см при комнатной температуре 22-23°С и увлажнении семян водой по мере подсыхания подложки. В качестве источников света применяют монохроматическое непрерывное освещение светодиодами синего света длиной волны 440 нм, или зеленого света длиной волны 525 нм, или красного света длиной волны 660 нм при генерации фотонов низкой интенсивности в 6,52 мкмоль/(м2⋅с), 1,44 мкмоль/ (м2⋅с) и 2,36 мкмоль/ (м2⋅с), соответственно, на уровне подложки с семенами в течение 6 суток проращивания до получения первичной микрозелени. Способ обеспечивает расширение возможностей использования водных золей нанокремнезема гидротермального происхождения в сочетании с воздействием монохроматическим спектром областей синего, зеленого и красного света низких интенсивностей, применяемых постоянно в процессе проращивания семян редиса с повышением всхожести семян, качества ростков по их продуктивности и наличию высоких значений суммарной антиоксидантной активности получения проросших семян и первичной микрозелени растений для питания и селекции при получении новых высокопродуктивных биотипов редиса. 3 табл.
Изобретение относится к области сельского хозяйства и может найти применение при выращивании картофеля в открытом грунте. Способ включает некорневую обработку растений в фазах первых 4-5 листьев и бутонизации – цветения с применением препарата, содержащего крезацин и гидротермальный нанокремнезем. Для некорневой обработки растений при фиксированном расходе препарата по массе 20 г/га и объемном расходе водных рабочих растворов 300 л/га, используют составы с массовым содержанием крезацина и гидротермального нанокремнезема в диапазонах 5,0-95,0 % и 95,0-5,0 %, соответственно. Способ позволяет повысить урожайность и качество клубней картофеля по химическому составу с повышением экологичности картофеля для питания. 2 табл.
Изобретение относится к области сельского хозяйства. Предложен способ предпосевной обработки семян клевера и амаранта, которые обрабатывают рабочим раствором гидротермального нанокремнезема с концентрацией 0,05-0,005 мас.%, полученным разведением при перемешивании исходного золя гидротермального нанокремнезема концентрации 5,0% в минеральной воде Серноводская. Используют золь гидротермального нанокремнезема, полученного из гидротермальных растворов Мутновского вулкана с полидисперсностью составляющих его наночастиц с преобладанием размеров 10-20 нм, и серосодержащую воду Серноводскую, содержащую (мг/л): калий (K) 6,6; натрий (Na)85,5; магний (Mg) 34,2; кальций (Са) 52,4; фторид (F) 1; хлорид (Cl) 115,8; сульфат (SО4) 242; гидрокарбонат (НСО3) 366,1; природный йод (I) 0,6. Время экспозиции семян в приготовленном растворе составляет 30-40 минут. Способ позволяет повысить энергию прорастания и всхожесть семян растений. 2 табл., 3 пр.

Изобретение относится к способу модифицирования бетона добавкой гидротермальных наночастиц SiO2 и многослойных углеродных нанотрубок (МУНТ) и может найти применение при изготовлении сборных и монолитных изделий и конструкций зданий и сооружений различного назначения. Технический результат заключается в повышении механических характеристик бетона, плотности, ускорения твердения, скорости набора прочности, морозостойкости, снижении водопоглощения и улучшении показателей поровой структуры, снижении общей капиллярной пористости. Сырьевая смесь для изготовления сборных и монолитных изделий и конструкций содержит портландцемент, песок, щебень, комплексную добавку и воду, причем в качестве комплексной добавки содержит поликарбоксилатный суперпластификатор, многослойные углеродные нанотрубки (МУНТ) и гидротермальный нанокремнезем при следующем соотношении компонентов, мас. %: портландцемент 14-16; песок 38-40; щебень 41-43; комплексная добавка (относительно цемента) 0,8; суперпластификатор 0,32-0,4; МУНТ 0,00004-0,05; гидротермальные наночастицы SiO2 0,000003-0,01; вода (В/Ц=0,15-0,5) остальное. 21 табл., 14 ил.
Изобретение относится к области сельского хозяйства. Предложен способ предпосевной обработки семян бобовых луговых трав, включающий использование кремнийсодержащего препарата. Для предпосевной обработки семян готовят рабочие водные золи гидротермального нанокремнезема концентраций 0,05-0,0005 % масс. на основе исходного водного золя нанокремнезема 2,5%-ной концентрации с преобладанием размеров составляющих его частиц 10-20 нм, который получают из гидротермальных растворов Мутновского месторождения Камчатки. Время экспозиции семян в приготовленных разбавленных водой золях гидротермального нанокремнезема составляет 120 минут. Способ позволяет повысить эффективность стимулятора природного происхождения для развития растений на стадии проращивания семян. 2 табл., 5 пр.
Изобретение относится к области сельского хозяйства. Предложен способ стимуляции роста и развития растений пшеницы, включающий обработку семян кремнеземсодержащими препаратами. Предпосевную обработку семян пшеницы проводят с использованием замачивания семян на 120 минут в исходном гидротермальном растворе Мутновского месторождения, содержащем, мг/л: Na+ 200-300; K+ 30-40; SO42- 200-300; Cl- 200-300; H3BO3 100; H2CO3 40-60; также Ca, Mg, Al, Mn, Zn до 20, а также ортокремниевую кислоту 50-100 и наночастицы SiO2 300-500, или в разбавленных водой до 50-крат от исходного растворах. Способ позволяет повысить энергию прорастания и всхожесть семян. 2 табл., 4 пр.
Изобретение относится к области сельского хозяйства. Предложен способ повышения продуктивности нуга Абиссинского при проращивании семян, включающий использование кремнийсодержащего препарата. Для предпосевной обработки семян готовят рабочие водные золи гидротермального нанокремнезема концентраций 0,05-0,0005 % мас. на основе исходного водного золя нанокремнезема 2,5%-ной концентрации с преобладанием размеров составляющих его частиц 10-20 нм, который получают из гидротермальных растворов Мутновского месторождения Камчатки. Время экспозиции семян в приготовленных разбавленных водой золях гидротермального нанокремнезема составляет 120 минут. Способ позволяет расширить возможности использования водных золей природного нанокремнезема гидротермального происхождения и определенных его концентраций для повышения всхожести семян нуга Абиссинского. 2 табл., 5 пр.
Изобретение относится к области сельского хозяйства. Предложен способ предпосевной обработки семян злаковых луговых трав, включающий использование кремнийсодержащего препарата. Для предпосевной обработки семян готовят рабочие водные золи гидротермального нанокремнезема концентраций 0,05 - 0,0005 % масс. на основе исходного водного золя нанокремнезема 2,5 %-ной концентрации с преобладанием размеров составляющих его частиц 10-20 нм, который получают из гидротермальных растворов Мутновского месторождения Камчатки. Время экспозиции семян в приготовленных разбавленных водой золях гидротермального нанокремнезема составляет 120 минут. Способ позволяет повысить эффективность стимулятора природного происхождения для развития растений на стадии проращивания семян. 2 табл., 5 пр.
Изобретение относится к области сельского хозяйства. Предложен способ активации проращивания семян рапса, включающий использование кремнийсодержащего препарата. Для предпосевной обработки семян готовят рабочие водные золи гидротермального нанокремнезема концентраций 0,05 - 0,0005 мас.% на основе исходного водного золя нанокремнезема 2,5-%-ной концентрации с преобладанием размеров составляющих его частиц 10-20 нм, который получают из гидротермальных растворов Мутновского месторождения Камчатки. Время экспозиции семян в приготовленных разбавленных водой золях гидротермального нанокремнезема составляет 120 минут. Способ позволяет увеличить эффективность всхожести семян рапса. 2 табл., 5 пр.
Изобретение относится к области сельского хозяйства. Предложен способ активации проращивания семян сои, включающий использование кремнийсодержащего препарата. Для предпосевной обработки семян готовят рабочие водные золи гидротермального нанокремнезема концентраций 0,05-0,0005 % масс. на основе исходного водного золя нанокремнезема 2,5%-ной концентрации с преобладанием размеров составляющих его частиц 10-20 нм, который получают из гидротермальных растворов Мутновского месторождения Камчатки. Время экспозиции семян в приготовленных разбавленных водой золях гидротермального нанокремнезема составляет 120 минут. Способ позволяет повысить эффективность проращивания семян сои. 2 табл., 5 пр.
Изобретение относится к области сельского хозяйства, в частности к растениеводству, и может найти применение для предпосевной обработки семян сахарной свеклы как активатора роста для селекции и семеноводства при интродукции растений и получении проростков свеклы в технологиях получения микрозелени. В способе проращивают семена сахарной свеклы Смена с использованием кремнийсодержащего препарата. При этом перед посевом семена замачивают на 120 мин в водном золе гидротермального нанокремнезема с полидисперсностью составляющих его наночастиц с преобладанием размеров 10-20 нм и его концентраций в рабочих растворах в диапазоне 0,0005% - 0,05%. Проращивание семян осуществляют в темноте при поддержании их увлажнения водой. Способ обеспечивает расширение возможностей использования водных золей природного нанокремнезема гидротермального происхождения и определенных его концентраций с повышением всхожести семян сахарной свеклы, стимуляции роста, продуктивности с реализацией технологий получения проросших семян с получением микрозелени или в качестве предпосевной обработки семян для открытого и защищенного грунта, а также для интродукции и селекции с получением новых высокопродуктивных сортов, отзывчивых на наноразмерный кремнезем. 2 табл., 4 пр.
Изобретение относится к области сельского хозяйства, в частности к растениеводству, и может найти применение для предпосевной обработки семян редиса как активатора проращивания семян, повышения энергии прорастания, всхожести, роста и продуктивности ростков для селекции и семеноводства и получении проростков для здорового питания. Способ включает активацию проращивания семян редиса сорта Юбилейный с использованием кремнийсодержащего препарата. При этом семена редиса перед посевом замачивают на 120 мин в водном золе гидротермального нанокремнезема с полидисперсностью составляющих его наночастиц с преобладанием размеров 10-20 нм и его концентраций в рабочих растворах в диапазоне 0,0005% - 0,05%. Проращивание семян осуществляют при комнатной температуре 22°С с поддержанием их увлажнения водой. Способ обеспечивает расширение возможностей использования водных золей природного нанокремнезема гидротермального происхождения и определенных его концентраций с повышением энергии прорастания, всхожести семян редиса, активации роста, продуктивности с реализацией технологий получения проросших семян для получения микрозелени или в качестве предпосевной обработки семян для открытого и защищенного грунта, а также для селекции при получении новых высокопродуктивных сортов, отзывчивых на наноразмерный кремнезем. 2 табл., 5 пр.
Изобретение относится к области сельского хозяйства, в частности к растениеводству. В способе семена сахарной свеклы проращивают с использованием светодиодного освещения синего и зеленого света. Семена сахарной свеклы обрабатывают 120 мин рабочим раствором водного золя гидротермального нанокремнезема с концентрацией наночастиц 0,001% с последующим посевом и 10-суточным проращиванием при комнатной температуре и увлажнением семян. В качестве источников света используют монохроматическое непрерывное освещение светодиодами синего света с длиной волны 440 нм или зеленого света с длиной волны 525 нм, при генерации фотонов низкой интенсивности в диапазоне 6,52 – 1,44 мкмоль/(м2⋅с) на уровне подложки с семенами и получении первичной микрозелени. Способ обеспечивает расширение возможностей использования светодиодного освещения синего и зеленого света в вариантах монохроматического излучения низкой интенсивности в комбинации с предпосевной обработкой семян гидротермальным нанокремнеземом для селекции новых биотипов растения и повышения всхожести семян сахарной свеклы, продуктивности ее ростков при 10-суточном проращивании с получением первичной микрозелени. 2 табл., 1 пр.
Изобретение относится к сельскому хозяйству. Способ проращивания семян овсяницы характеризуется тем, что включает предварительную обработку семян овсяницы 0,005% водным золем гидротермального нанокремнезема в течение 120 минут с последующим посевом, проращиванием при комнатной температуре и увлажнением семян в течение 10 суток при непрерывном освещении светодиодами синего света с длиной волны 440 нм, с интенсивностью 6,52 мкМоль/м2⋅с, или светодиодами зеленого света с длиной волны 525 нм, с интенсивностью 1,44 мкМоль/м2·с, или светодиодами красного света с длиной волны 660 нм, с интенсивностью 2,36 мкМоль/м2⋅с на уровне подложки с семенами. Изобретение позволяет повысить всхожесть семян злаковых луговых трав и продуктивность ростков при 10-суточном проращивании. 2 табл.
Изобретение относится к сельскому хозяйству. Способ повышения всхожести семян пшеницы включает обработку семян кремнийсодержащим стимулятором развития растений, причем предпосевную обработку семян проводят с использованием замачивания семян пшеницы в рабочих растворах гидротермального нанокремнезема в концентрациях 0,5-0,0001% в течение 120 минут. Изобретение позволяет стимулировать развитие растений, в качестве которых используют пшеницу, на стадии проращивания. 3 табл., 6 пр.
Изобретение относится к области сельского хозяйства, в частности к растениеводству. Способ включает использование освещения. Семена предварительно обрабатывают водным золем 0,001% гидротермального нанокремнезема в течение 120 минут с последующим посевом и проращиванием семян на подложке. Полив проводят дистиллированной водой по мере подсыхания подложки в течение 7 суток при непрерывном освещении светодиодами синего света с длиной волны 440 нм, или светодиодами зеленого света с длиной волны 525 нм, или светодиодами красного света с длиной волны 660 нм. Причем для всех источников используют режим низкой интенсивности генерируемых фотонов в диапазоне 1,44-6,52 мкмоль/(м2⋅с) на уровне подложки с семенами. Способ расширяет возможности использования светодиодного освещения в варианте монохроматических спектров синего, зеленого и красного света в комбинации с обработкой перед проращиванием семян наночастицами кремнезема гидротермального происхождения для повышения всхожести семян нуга Абиссинского, продуктивности его ростков в фазе 7-суточного проращивания. 3 табл.
Изобретение относится к области сельского хозяйства, в частности к растениеводству. Способ включает освещение светодиодами ультрафиолетовой области спектра. Семена предварительно обрабатывают водным золем гидротермального нанокремнезема при концентрации 0,01% в течение 120 минут, с последующим посевом и проращиванием в стандартных условиях по температуре и увлажнении семян в течение 7 суток. Далее на уровне подложки с семенами проводят непрерывное освещение светодиодами монохроматического ультрафиолетового света с длиной волны 380 нм и низкой интенсивностью генерируемых фотонов в 0,44 мкмоль/м2⋅с. Способ позволяет расширить возможности использования светодиодного освещения в варианте монохроматического излучения ультрафиолетовой области спектра света в комбинации с обработкой перед проращиванием семян рапса наночастицами кремнезема гидротермального происхождения для повышения энергии прорастания и всхожести семян, высоты и урожайности ростков в фазе 7-суточного проращивания. 2 табл., 1 пр.
Изобретение относится к сельскому хозяйству. Способ повышения всхожести семян включает обработку семян кремнийсодержащим стимулятором развития растений, причем предпосевную обработку проводят с использованием замачивания семян клевера в рабочем растворе гидротермального нанокремнезема с концентрацией 0,05-0,005% при экспозиции 30-40 минут. Изобретение позволяет повысить энергию прорастания и всхожести семян однолетних сортов клевера. 2 табл., 3 пр.
Изобретение относится к области сельского хозяйства, в частности к растениеводству. Способ включает использование освещения в области синего и красного света. Семена предварительно обрабатывают водным золем 0,001% гидротермального нанокремнезема в течение 15 минут, с последующим посевом и проращиванием в стандартных условиях при комнатной температуре и увлажнении семян в течение 7 суток, при непрерывном монохроматическом освещении светодиодами синего - длина волны 440 нм или зеленого - длина волны 525 нм, или красного - длина волны 660 нм света. Причем для светодиодного источника используют режим низкой интенсивности генерируемых фотонов, соответственно, в 6,52 мкмоль/м2⋅с, 1,44 мкмоль/м2⋅с, 2,36 мкмоль/м2⋅с на уровне подложки с семенами. Способ обеспечивает расширение возможностей использования светодиодного освещения в варианте монохроматических спектров синего, зеленого и красного света в комбинации с обработкой перед проращиванием семян наночастицами кремнезема гидротермального происхождения для повышения всхожести семян сои, продуктивности ее ростков при 7-суточном проращивании. 2 табл.
Изобретение относится к области сельского хозяйства, в частности к растениеводству. Способ включает использование светодиодного освещения спектров синего, зеленого и красного света, отличающийся тем, что семена обрабатывают водным золем 0,01% гидротермального нанокремнезема в течение 120 минут с последующим проращиванием семян на подложках из минеральной ваты в виде пластин с поливом дистиллированной водой по мере подсыхания подложки в течение 7 суток при непрерывном освещении светодиодами синего света с длиной волны 440 нм или светодиодами зеленого света с длиной волны 525 нм, или светодиодами красного света с длиной волны 660 нм. Причем для всех источников характерна низкая интенсивность генерируемых фотонов в диапазоне 1,68 мкмоль/м2⋅с до 6,90 мкмоль/ м2⋅с. Способ позволяет расширить возможность использования светодиодного освещения в варианте монохроматических спектров синего, зеленого и красного света в комбинации с обработкой перед проращиванием семян наночастицами кремнезема гидротермального происхождения для повышения энергии прорастания и всхожести семян рапса, урожайности его ростков в фазе семисуточного проращивания. 2 табл., 1 пр.
Изобретение относится к области сельского хозяйства, в частности к повышению всхожести семян пшеницы в растениеводстве, селекционных работах, семеноводстве и расширению области применения в технологиях получения пророщенной пшеницы и микрозелени для здорового питания. Способ активации проращивания семян пшеницы заключается в том, что семена озимой пшеницы обрабатывают водным раствором 0,01% гидротермального нанокремнезема в течение 2 часов с последующим посевом и проращиванием в стандартных условиях по температуре и увлажнению семян в течение 7 дней при воздействии узкополосного освещения светодиодами дальнего красного света (СД ДКС) с длиной волны 730 нм в режиме низкой интенсивности в 2 мкмоль м-2 с-1 на уровне подложки с семенами. Способ активации проращивания семян пшеницы позволяет повысить энергию прорастания, всхожесть семян озимой пшеницы, качество ростков и расширить область применения светодиодов в агробиофотонике и наночастиц кремнезема гидротермального происхождения для сельского хозяйства и получения новых продуктов здорового питания. 2 табл.

Изобретение относится к сельскому хозяйству. Способ использования гидротермального нанокремнезема для получения экологически чистой продукции салата в замкнутых агробиотехносистемах включает некорневую обработку овощных культур кремнийсодержащим препаратом в период вегетации, при этом в замкнутых агробиотехносистемах в контролируемых условиях среды используют некорневую подкормку растений гидротермальным нанокремнеземом концентрации 0,005% в смеси с крезацином концентрации 0,045% в водном растворе однократно на 18-20 день вегетации салатных культур путем мелкокапельной некорневой обработки при светодиодном освещении. Изобретение позволяет сократить затраты и повысить эффективность за счет однократной обработки и получить экологически безопасную овощную продукцию. 3 табл., 2 пр.

Изобретение относится к области сельского хозяйства, в частности к кормопроизводству, и может найти применение в птицеводстве. Сущность изобретения заключается в том, что в корм цыплятам с 10-дневного возраста до их половозрелого возраста и курам-несушкам включают золь, или гель, или порошок аморфного гидротермального нанокремнезема в концентрации 0,0125-0,2% по твердому SiO2 при диаметре частиц 5-100 нм. Осуществление изобретения позволяет увеличить эффективность выращивания птицы при откорме цыплят с сокращением сроков их откорма, повысить яичную продуктивность кур-несушек, снизить отход яйца в процессе производства, повысить качество яйца, сохранить поголовье цыплят при откорме и кур-несушек в производстве яйца. 5 табл., 2 пр.

Изобретение относится к сельскому хозяйству. В условиях защищенного грунта при выращивании томатов при первом появлении на листьях растения грибного патогена - мучнистой росы в виде белого налета - растения обрабатывают мелкодисперсными каплями золя гидротермального нанокремнезема с рабочей концентрацией 0,05%, из расчета на твердый SiO2 при внекорневой обработке вегетирующих растений, а через 15 дней после появления признаков заболевания осуществляют повторную обработку растений той же концентрацией препарата. Способ позволяет повысить продуктивность растений томата, существенно снизить пораженность листьев томата и повысить на 72% биологическую эффективность обработки растений. 1 табл., 1 пр.

Изобретение относится к отрасли пчеловодства, в частности к способу использования гидротермального нанокремнезема в качестве кормовой добавки. Способ включает введение в рацион пчел нанокремнезема в формах золя, геля или порошка, полученных из гидротермальных растворов. Нанокремнезем используют в дозах от 50 до 250 мг (при пересчете на SiO2) на одну пчелосемью при однократной подкормке сахарным сиропом с соотношением вода/сахар - 1:1 или двукратной подкормке при соотношении вода/сахар - 2:1. Использование изобретения позволит повысить продуктивность пчелосемей по товарному медосбору и побочным пчелопродуктам. 4 табл., 4 пр.

Изобретение относится к составу высокопрочного бетона и может быть использовано для изготовления изделий в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения. Технический результат заключается в ускорении твердения и повышении прочности при сжатии в проектном возрасте. Способ основан на влиянии наночастиц кремнезема на скорость реакций гидратации силикатов кальция, на структуру геля гидратов силикатов кальция, и, в конечном итоге, на механические характеристики бетонов. Для формирования наночастиц кремнезема в гидротермальном растворе проводят поликонденсацию молекул ортокремниевой кислоты (ОКК), поступающей при растворении алюмосиликатных минералов пород в условиях повышенных давлений и температур в недрах месторождений. Наночастицы, образующиеся после завершения поликонденсации ОКК, концентрируют с применением ультрафильтрационных мембранных фильтров. Стабильный водный золь перемешивают с суперпластификатором и вводят в воду затворения при дозах нанокремнезема по цементу 0,01-2,0 масс.% и дозах суперпластификатора по цементу 0,0-1,0 масс.%, перемешивают воду затворения с жидкими добавками золя и суперпластификатора и добавляют в систему цемент-песок при В/Ц от 0,71 до 0,25, перемешивают цементно-песчаную смесь с водой затворения. 2 ил., 6 табл.

Изобретение относится к области инженерной экологии. Устройство для финишной очистки морских прибрежных вод, представляющее собой санитарную водорослевую плантацию, включающую силовые пропиленовые канаты диаметром 30-40 мм, удерживаемые в горизонтальном положении металлическими тросами, прикрепленными к гравитационным якорям через крепежные элементы плавучих буев, соединенных с силовыми канатами. Устройство снабжено удерживаемыми на поверхности рабочими модулями для размещения фукусовых водорослей размером 2×1,5 м, сформированными из синтетических канатов диаметром 10-20 мм, являющихся субстратами для фукусовых водорослей. Модули прикреплены к пропиленовым силовым канатам или металлическим тросам посредством поплавков-кухтелей, для обеспечения крепления в требуемом положении модулей по отношению к направлению перемещения загрязненных вод в зависимости от погодных условий. Устройство включает приклепленные к силовым канатам вертикальные канаты-подводцы, являющиеся субстратом для ламинарий, длиной 5-12 м, и снабженные грузами, обеспечивающими их натяжение. Это повышает эффективность процесса финишной и профилактической очистки морских прибрежных вод от нефтепродуктов, токсичных металлов и бытовых отходов. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области экологии, к защите природных объектов от загрязнений жидкими радиоактивными отходами (ЖРО) и/или другими жидкими токсичными отходами (ЖТО), побочно образующимися при переработке отработанного ядерного топлива (ОЯТ) или промышленной деятельности

Изобретение относится к области экологии, конкретнее к иммобилизации жидких радиоактивных отходов от переработки отработавшего ядерного топлива АЭС, АПЛ, образующихся при утилизации и дезактивации АПЛ и других объектов, связанных с использованием радиоактивных веществ, соединений

Изобретение относится к способам использования минеральных ресурсов гидротермальных растворов

Изобретение относится к способам использования минеральных ресурсов

Изобретение относится к способам извлечения химических соединений из жидкой фазы гидротермального теплоносителя

 


Наверх