Патенты автора Рачук Владимир Сергеевич (RU)

Изобретение относится к пищевой, нефтяной промышленности, экологии и водоочистке и может использовано для получения экологически чистой питьевой воды, обеззараживания молока и фруктовых соков, упрощения трубопроводной транспортировки нефтей и нефтепродуктов. Гидродинамическая установка содержит последовательно соединенные рабочий насос 5, выполненный с возможностью обеспечения на выходе давления, равного или превышающего 5 кг/см2, агрегат-растворитель 6, выполненный в виде трубопровода длиной (0,5-3,0) м и диаметром не менее выхода из рабочего насоса 5, конфузор 11, дезинтегратор 12. Система вдува сжатого газа оснащена баллонами 10: кислорода и/или атмосферного воздуха для обработки загрязненной воды; углекислого газа и/или азота для обработки молока и фруктовых соков; углеводородного газа, и/или водорода, и/или метана, для обработки нефти. Дезинтегратор 12 выполнен из двух параллельных горизонтальных трубопроводов 14 и 15 длиной (1,5-15) м и диаметром, равным диаметру выхода конфузора 11, подсоединенных входами к его выходу через тройник-разделитель 13, а выходами - к входу в диффузор 22 через тройник-соединитель 16, между которыми монтировано устройство попеременного дросселирования 18, оснащенное подвижной вертикальной перегородкой19 и выполненное с возможностью поочередного создания повышенного статического давления до скачкообразного схлопывания микропузырьков газа с микрогидроударами, образующими в точке схлопывания скачки давления и температуры, необходимые для качественной обработки жидкости: механического разрушения микроорганизмов в молоке, фруктовых соках, воде, при их обеззараживании; ускорения окисления растворенных в воде загрязняющих веществ при ее очистке; разделения нефтей на фракции при ее трубопроводной транспортировке и при переработке в ректификационных колоннах. Агрегат-растворитель 6 оснащен штуцерами 29 вдува газа, монтированными на его входе диаметрально противоположно друг другу перпендикулярно его оси, соединёнными с баллоном 10 через редуктор 8, управляемый клапан 9, дозирующие шайбы 7. Вращение подвижной вертикальной перегородки 19 обеспечивают электромотор 20 и редуктор 21. Перед рабочим насосом 5 может быть монтирована емкость-нагреватель 3. Изобретение обеспечивает уменьшение вязкости указанных жидкостей, и, как следствие, облегчить их перекачку, повысить качество и ускорить очистку указанных жидкостей, а также снизить нагрузку на экологию. 5 з.п. ф-лы, 1 ил.

Изобретение относится к области ракетостроения, в частности к узлам качания камер ЖРД, может быть использовано в космической технике и авиации. Узел качания камеры, расположенный между камерой и газоводом, включающий герметизирующее устройство, сферический неподвижный корпус, подвижный стакан, неподвижный и подвижный экраны, образующие центральный продольный канал, рамочный кардан, имеющий возможность качаться с камерой и герметизирующим устройством в 2-х взаимно перпендикулярных плоскостях относительно общего центра и газовода, согласно изобретению, герметизирующее устройство конструктивно совмещено с силовыми элементами и содержит силовой опорный вкладыш, жестко закрепленный на стакане и имеющий шаровую поверхность, эквидистантную сферической поверхности корпуса, покрытую материалом с низким коэффициентом трения и высоким уплотняющим свойством, например «Афталом». Кроме того, рамочный кардан имеет регулировочные прокладки, устанавливаемые между вилками кардана и сферическим корпусом для регулирования распределения осевого усилия на шаровом вкладыше и кардане. Неподвижный экран с входным наконечником газовода выполнен в виде конфузора, с минимальным диаметром на 25-30% меньше входного диаметра, с последующим переходом в диффузор, а подвижный экран выполнен в виде диффузора с каналами регенеративного охлаждения. Изобретение обеспечивает упрощение конструкции, ее компактности, снижение массы и габаритов. 3 з.п. ф-лы, 2 ил.

Изобретение относится к ракетной технике, а именно к способу изготовления сопла жидкостного ракетного двигателя оживальной формы. Сопло состоит из нескольких автономных трапецеидальных секторов оживальной формы, соединенных в осевом направлении. Формообразование оживального профиля пакета внутренней и наружной стенок каждого сектора выполняют взрывом, на наружной поверхности внутренней стенки каждого сектора фрезерованием выполняют пазы переменной ширины с образованием ребер каналов охлаждения, каждую внутреннюю стенку сектора оживального профиля накрывают отформованной тонкостенной наружной стенкой и соединяют их, после чего проводят гидропневмоиспытания секторов, затем их торцы подвергают механической обработке и секторы сваривают продольными профильными швами в готовое сопло с последующим неразрушающим контролем сварных швов и гидропневмоиспытанием секторов. Изготовить сопло жидкостного ракетного двигателя можно по другому варианту из нескольких плоских трапецеидальных секторов. При этом фрезерование пазов в каждом секторе и их соединение выполняют в плоском виде. Формообразование оживального профиля сопла выполняют штамповкой взрывом или разжимными пуансонами. Соединение наружной и внутренней стенок осуществляют пайкой или лазерной сваркой. Количество секторов определяют шириной листа заготовки и диаметром сопла. Сварку секторов между собой выполняют лазерной или электронно-лучевой сваркой. Изобретение обеспечивает получение прочной и надежной конструкции крупногабаритного сопла оживальной формы независимо от габаритов, изготовление которой не требует уникального оборудования и значительных капитальных вложений. 2 н. и 7 з.п. ф-лы, 10 ил.

Изобретение относится к области насосостроения и может быть использовано в ракетостроении, в турбонасосных агрегатах (ТНА) жидкостных и ядерных ракетных двигателей. ТНА содержит насос 1, турбину 2, опирающийся на подшипники 4, 5 вал 3 с установленными на нем рабочим колесом 6 турбины 2 и крыльчаткой 7, корпус 8, разделительную полость 9 с уплотнениями 10, 11 вала 3, полость 12 за уплотнением 11, расположенным между разделительной полостью 9 и насосом 1, полость 13 за крыльчаткой 7. Уплотнения 10, 11 отделяют полость турбины 2 от полости насоса 1. Разделительная полость 9 соединена с полостью 13 высокого давления каналом 14. Полость 12 за уплотнением 11, расположенным между разделительной полостью 9 и насосом 1, объединена с полостью 13 за крыльчаткой 7. Изобретение направлено на повышение надежности запуска ЖРД за счет улучшения кавитационных качеств насоса, обусловленных снижением «горячих» утечек криогенной жидкости во входную часть крыльчатки в случае запуска без предварительного захолаживания конструкции. 2 н. и 4 з.п. ф-лы, 4 ил.

Изобретение относится к области ракетной техники и может быть использовано при создании форсуночных головок камер сгорания жидкостных ракетных двигателей (ЖРД). Форсуночная головка камеры сгорания ЖРД содержит корпус и огневое днище с установленными в них форсунками, имеющими центральный профилированный и тангенциальный каналы, соединяющими полости компонентов с полостью камеры сгорания, при этом торец выходного сечения расширяющейся части центрального канала форсунки расположен перед отверстиями тангенциального канала форсунки, а уступ h между центральным и тангенциальным каналами составляет не более 20% d, где d - диаметр тангенциального канала форсунки. Изобретение обеспечивает повышение экономичности работы камеры сгорания и повышения удельного импульса тяги. 2 ил.

Группа изобретений относится к области насосостроения и может быть использована в ракетостроении, в турбонасосных агрегатах (ТНА) жидкостных ракетных двигателей (ЖРД) и ядерных ракетных двигателей (ЯРД). ТНА содержит насос 1, турбину 2, вал 3, опирающийся на шарикоподшипники 4, 5, установленные на валу 3 рабочее колесо 6 турбины 2 и крыльчатку 7, корпус 8 и разделительную полость 9 с уплотнениями 11 вала 3 со стороны полости насоса 1 и полости перед колесом 6 турбины 2. Разделительная полость 9 каналом 12 в корпусе и внешним отводящим трубопроводом 13 соединена с магистралью двигателя, давление в которой ниже давления в полости турбины 2. Внешний отводящий трубопровод 13 может быть соединен с газовым трактом после турбины 2, с магистралью подвода жидкости в насос 1, с магистралью подвода жидкости в двигатель. Разделительная полость 9 может быть соединена с газовым трактом после турбины 2 каналом или каналами в валу 3 и рабочем колесе 6 турбины 2. Группа изобретений направлена на повышение надежности ТНА ЖРД и коэффициента полезного действия турбонасосного агрегата. 2 н. и 3 з.п. ф-лы, 2 ил.

Изобретение относится к области ракетной техники и может быть использовано при разработке и изготовлении сопел камер сгорания жидкостных ракетных двигателей (ЖРД). Способ изготовления сопла камеры сгорания ЖРД, включающий изготовление наружной и внутренней оболочек, сборку оболочек, пайку, выполнение перепускных отверстий охладителя в одном или нескольких подколлекторных кольцах, сварку одного или нескольких коллекторов с подколлекторными кольцами, согласно изобретению пайку сопла камеры сгорания осуществляют до выполнения перепускных отверстий охладителя в подколлекторных кольцах или при выполнении перепускных отверстий охладителя не на всю толщину стенки подколлекторных колец, затем после пайки в подколлекторных кольцах выполняют перепускные отверстия охладителя на всю толщину стенки подколлекторных колец и приваривают коллекторы с наконечниками к соплу, причем отверстия выполняют механическим или электроэрозионным сверлением. Изобретение обеспечивает повышение качества паяного соединения, а также исключает засорение перепускных отверстий в подколлекторном кольце и пазов охлаждающего тракта. 1 з.п. ф-лы, 4 ил.

Изобретение относится к энергетике. Способ запуска водородной паротурбинной энергоустановки основан на продувке полостей и магистралей нейтральным газом, поэтапной подаче компонентов топлива и воды в энергоустановку, согласно первому варианту изобретения запуск осуществляют при сниженном расходе компонентов топлива, не более 80% от номинального, в процессе запуска регулируют расход пара через турбину, изменяя мощность на выходном валу, а при выходе на номинальный режим подают дополнительные компоненты топлива и воды. Кроме того, подача дополнительных компонентов топлива и воды, в отличие от первого варианта, может быть выполнена регулируемой. Также представлены устройства для реализации способов согласно первому и второму вариантам. Изобретение позволяет повысить долговечность за счет снижения термических напряжений в конструкции при запуске с малым временем выхода на режим. 4 н.п. ф-лы, 2 ил.

Изобретение относится к энергетике. Теплообменный аппарат содержит теплообменник с корпусом и цилиндрической оболочкой, образующими каналы, входной и выходной коллекторы, дополнительный теплообменник, расположенный последовательно с первым, содержащий входной и выходной коллекторы. Кроме того, внутри теплообменников расположен трубчатый теплообменник, содержащий входной и выходной коллекторы, расположенные между двумя первыми теплообменниками, кроме того, трубчатый теплообменник имеет обобщающие входной и выходной коллекторы, соединенные трубопроводами между собой и с входным и выходным коллекторами, кроме того, внутри трубчатого теплообменника установлен цилиндрический экран с обтекателем, а выходной обобщающий коллектор соединен с корпусом первого теплообменника пилонами, расположенными под углом α к оси теплообменного аппарата. Трубчатый теплообменник содержит также бандаж, установленный между обобщающими коллекторами, а дополнительный теплообменник снабжен соплом. Изобретение позволяет повысить производительность теплообменного аппарата без увеличения его габаритов. 2 з.п. ф-лы, 1 ил.

Изобретение относится к ракетной технике

Изобретение относится к ракетной технике и может быть использовано преимущественно в силовых блоках ракет-носителей (РН) для управления вектором тяги

Изобретение относится к области энергетики, а именно к парогазовым энергоустановкам

Изобретение относится к области энергетики и может быть использовано для выработки электроэнергии гарантированных параметров в широком температурном диапазоне атмосферного воздуха при пониженном выбросе вредных веществ в составе выхлопных газов

Изобретение относится к области машиностроения, а именно к области лопаточных машин, и может быть использовано в турбонасосных агрегатах жидкостных ракетных двигателей и ядерных ракетных двигателей

Изобретение относится к ракетно-космической технике и может быть использовано для многократного запуска ракетных двигателей (РД), использующих как жидкие, так и газообразные ракетные топлива в условиях их эксплуатации на ракетах, космических аппаратах и орбитальных пилотируемых космических станциях, при отработке двигателей в стендовых условиях

Изобретение относится к области ракетного двигателестроения, ориентированного на космические транспортные системы

Изобретение относится к ракетной технике, а именно к созданию ракет-носителей (РН) и разгонных ракетных блоков (РБ) с жидкостными ракетными двигателями (ЖРД)

Изобретение относится к машиностроению, в частности к редукторам для передачи крутящего момента

Изобретение относится к ветроэнергетике и может быть использовано в ветроэлектрических станциях высокой мощности
Изобретение относится к области порошковой металлургии, в частности к получению жаропрочного наноструктурированного конструкционного материала методом гранульной металлургии

Изобретение относится к жидкостным ракетным двигателям

Изобретение относится к области двигателестроения и может быть использовано при создании жидкостных ракетных двигателей (ЖРД)

Изобретение относится к области жидкостных ракетных двигателей

Изобретение относится к области ракетного двигателестроения

Изобретение относится к области ракетостроения и может быть использовано при создании жидкостных ракетных двигателей (ЖРД) для ракет-носителей (РН)

Изобретение относится к ракетному двигателестроению

Изобретение относится к области двигателестроения и может быть использовано при создании жидкостных ракетных двигателей (ЖРД), работающих по безгенераторной схеме

 


Наверх