Жидкостный ракетный двигатель

Изобретение относится к ракетному двигателестроению. Жидкостный ракетный двигатель содержит камеру сгорания с трактом охлаждения и форсуночной головкой, газогенератор, насос горючего, насос окислителя и турбину, сообщенную входом с газогенератором, а выходом - с форсуночной головкой, при этом он снабжен дополнительной турбиной, вход которой сообщен с выходом из тракта охлаждения, а выход - с форсуночной головкой. Изобретение обеспечивает повышение надежности и ресурса работы двигателя. 1 ил.

 

Предлагаемое изобретение относится к области ракетного двигателестроения, ориентированного на космические транспортные системы.

Тенденция развития космических транспортных систем на современном этапе выдвигает на первый план вопросы стоимости и безопасности вывода полезных грузов на космические орбиты. Реализация этого направления развития космической техники связывается с созданием высоконадежных многоразовых ракет с низкими расходами по их техническому обслуживанию при эксплуатации.

Материальные и временные затраты, требуемые для создания надежной конструкции многоразового ракетного двигателя, являющегося одним из основных элементов ракеты, в значительной степени определяются его составом и напряженностью агрегатов (по температуре, удельным нагрузкам), которые, в свою очередь, зависят от принципиальной схемы двигателя и назначенных проектных параметров.

Уровень основных параметров современного жидкостного ракетного двигателя с турбонасосной системой подачи топлива (например, таких, как давления в камере сгорания, угловых скоростей вращения роторов насосов и турбин) обычно высок, поскольку от этих параметров зависят выходные характеристики двигателя (таких, как удельный импульс тяги, габариты, удельная масса). Ограничения этого уровня на каждом текущем этапе развития определяются, главным образом, достижениями в области металлургии, технологии проектирования и производства.

Вопросы обеспечения высокой надежности двигателя находятся в определенном противоречии с вопросами достижения высоких выходных характеристик, поскольку сложность отработки любой агрегата двигателя объективно находится в обратной зависимости от сложности конструкции агрегата и его напряженности. Для многоразового двигателя, характеризующегося большим проектным ресурсом, это противоречие усиливается. В связи с этим проблема снижения уровня напряженности агрегатов особенно актуальна для жидкостных ракетных двигателей, предназначенных для применения в перспективных космических транспортных системах.

Известен жидкостный ракетный двигатель (ЖРД), в котором рабочее тело турбины, предназначенной для привода топливных насосов, образуется путем подогрева (с газификацией) одного из компонентов топлива (например, горючего) в тракте охлаждения камеры сгорания (см. в книге авторов Б.В.Овсянникова и Б.И.Боровского «Теория и расчет агрегатов питания жидкостных ракетных двигателей», М.: Машиностроение, 1971, стр.31, рис.1.22).

Недостатком данного ЖРД является то, что в нем мощность турбины, определяемая при фиксированной температуре рабочего тела массовым расходом только одного из двух компонентов топлива, не является предельно возможной (достижимой) для данного вида топлива.

Известен также ЖРД, в котором оба компонента топлива газифицируются (частично сжигаются) в двух разноименных по составу газа газогенераторах (в одном - при избытке окислителя, а в другом - при избытке горючего) и используются затем в качестве рабочих тел на двух турбинах (см. в той же книге авторов Б.В.Овсянникова и Б.И.Боровского, стр.31, рис.1.21, а также данные по двигателю РД270 на сайте Интернета http://www.lpre.de/energomash/RD-270/index.htm). Данный вариант ЖРД, обладая преимуществом перед вышеупомянутым двигателем в части потенциальных возможностей по реализации предельного уровня мощности ТНА, имеет недостаток, связанный с необходимостью иметь в своем составе второй газогенератор (с агрегатами по его управлению). Кроме конструктивного и схемного усложнения этот ЖРД в некоторых случаях характеризуется дополнительным комплексом проблем, связанных либо с образованием в восстановительном газогенераторе отложений сажи (например, при использовании в качестве горючего углеводорода), либо с неустойчивостью рабочего процесса в восстановительном газогенераторе (например, в случае использования в качестве горючего несимметричного диметилгидразина). Существенным недостатком является также необходимость обеспечения режима синхронного запуска обоих газогенераторов.

Известен также ЖРД, который содержит камеру сгорания с трактом охлаждения и форсуночной головкой, газогенератор, насос окислителя, насос горючего и турбину, приводимую в действие рабочим телом (газом), вырабатываемым газогенератором с избытком одного из компонентов топлива - горючего или окислителя (см. в книге Б.В.Овсянникова и Б.И.Боровского «Теория и расчет агрегатов питания жидкостных ракетных двигателей», М.: Машиностроение, 1971, стр.29, рис.1.18 или 1.19 - прототип).

Недостатком данного ЖРД является то, что в нем также мощность турбины, определяемая при фиксированной температуре рабочего тела массовым расходом только одного из двух компонентов топлива, не является предельно возможной (достижимой) для данного вида топлива. Этот недостаток вызывает необходимость увеличения уровня температуры газа перед турбиной, что, в свою очередь, приводит к снижению ресурса и надежности двигателя.

Целью предлагаемого изобретения является устранение отмеченных недостатков прототипа, повышение надежности и ресурса работы ЖРД.

Данная цель достигается тем, что двигатель, который содержит камеру сгорания с трактом охлаждения и форсуночной головкой, газогенератор, насосы горючего и окислителя, турбину, приводимую в действие рабочим телом (газом), вырабатываемым газогенератором, согласно изобретению снабжается дополнительной турбиной, вход которой сообщен с выходом из тракта охлаждения камеры сгорания, а выход - с форсуночной головкой камеры сгорания.

Сущность предлагаемого ЖРД иллюстрируется принципиальной схемой, приведенной на чертеже, где приняты следующие обозначения:

1 - камера сгорания,

2 - тракт охлаждения камеры сгорания,

3 - форсуночная головка камеры сгорания,

4 - насос горючего,

5 - насос окислителя,

6 - турбина,

7 - газогенератор,

8 - дополнительная турбина.

Предлагаемый двигатель состоит из камеры сгорания 1, снабженной трактом охлаждения 2 и форсуночной головкой 3, насоса горючего 4, насоса окислителя 5, турбины 6, газогенератора 7 и дополнительной турбины 8. Турбина 6 соединена своим входом с газогенератором 7, а выходом - с форсуночной головкой 3. Дополнительная турбина 8 соединена своим входом с выходом охлаждающего тракта 2, а выходом - с форсуночной головкой 3.

Двигатель работает следующим образом.

Жидкий окислитель из бака поступает в насос 5 и далее под напором полным расходом - в газогенератор 7, где он вступает в реакцию горения с горючим, поступающим туда частичным расходом из насоса 4. Образовавшийся в газогенераторе с большим избытком окислителя газ поступает на турбину 6, приводя ее в движение, и далее - в форсуночную головку камеры сгорания 3. Жидкое горючее из бака через насос 4 основным расходом поступает в тракт охлаждения камеры сгорания 2, где оно подогревается и газифицируется. Далее газообразное горючее из тракта охлаждения 2 поступает на дополнительную турбину 8, сообщая ей энергию вращения, которая суммируется с энергией турбины 6, приводя насосы 4 и 5 в действие. Из дополнительной турбины 8 горючее поступает в форсуночную головку камеры сгорания 3. В камере сгорания происходит полное сгорание горючего в генераторном газе, имеющем большой избыток окислителя. Образовавшиеся продукты сгорания истекают из сопла камеры сгорания, создавая реактивную тягу двигателя.

Введение дополнительной турбины 8 дает возможность либо уменьшить температуру генераторного газа (т.е. температуру на турбине 6) с сохранением уровня мощности насосов, либо, сохранив уровень температуры газа на турбине 6, увеличить мощность насосов. Уменьшение температуры газа на турбине позволит при прочих равных условиях увеличить ресурс двигателя и его надежность, а увеличение мощности насосов позволит увеличить уровень давления в камере сгорания и на этой основе - увеличить удельный импульс тяги и уменьшить габариты двигателя.

Жидкостный ракетный двигатель, содержащий камеру сгорания с трактом охлаждения и форсуночной головкой, газогенератор, насос горючего, насос окислителя и турбину, сообщенную входом с газогенератором, а выходом - с форсуночной головкой, отличающийся тем, что он снабжен дополнительной турбиной, вход которой сообщен с выходом из тракта охлаждения, а выход - с форсуночной головкой.



 

Похожие патенты:

Изобретение относится к ракетной технике и предназначено для ракетных систем, работающих на кислородно-водородном топливе. .

Изобретение относится к космической технике, а точнее к области проектирования и эксплуатации ракетных двигательных установок (ДУ) космических аппаратов (КА). .

Изобретение относится к ракетостроению и, в частности, к поворотным соединениям трубопроводов, используемых преимущественно на ракетах для подачи горючего и пускового горючего в отклоняемые рулевые агрегаты жидкостных ракетных двигателей.

Изобретение относится к области ракетной техники, а более конкретно к топливным магистралям жидкостных ракетных двигателей. .

Изобретение относится к области регулирования расхода жидкости, а более конкретно к регулированию расходов компонентов топлива, подаваемых в жидкостные ракетные двигатели малой тяги (ЖРДМТ) - исполнительных органов (ИО) реактивных систем управления (РСУ) космических аппаратов (КА).

Изобретение относится к авиационно-космической технике и касается конструкции жидкостной ракетной двигательной установки, содержащей топливный бак жидкого кислорода, используемой в первой ступени ракеты-носителя воздушно-космической системы, выполняющей воздушный старт при десантировании ее с самолета-разгонщика.

Изобретение относится к энергетическим установкам, производящим водяной пар высоких параметров, получаемый за счет энергии, выделяемой при сгорании водорода в кислороде

Изобретение относится к области жидкостных ракетных двигателей

Изобретение относится к наземным средствам заправки бортовых баллонов ракетоносителей газообразным гелием

Изобретение относится к летательным аппаратам, а именно к летательным пусковым установкам (ЛПУ). ЛПУ содержит связку баков, крепежные средства, крыло, двигатель, полезную нагрузку. Связка баков содержит две пары одинаковых по объему цилиндрических баков с ракетным топливом одинаковой плотности и одинаковым объемным расходом. Четыре бака прикреплены друг к другу усиливающими поясами, образующими части баков, с неизменным центром тяжести при истечении ракетного топлива. Крепежные средства прикреплены к двум бакам с возможностью крепления к ним крыла. Связка баков размещена в верхней ступени с квадратным сечением и закругленными углами. Изобретение позволяет уменьшить длину пусковой установки. 3 з.п. ф-лы, 5 ил.

Изобретение относится к ракетной технике и, в частности, к устройствам, воспринимающим тягу жидкостного ракетного двигателя (ЖРД) и позволяющим обеспечить проток компонентов топлива из баков ракеты в магистрали двигателя и качание двигателя. В устройстве для восприятия тяги и протока двух компонентов топлива, включающем двухстепенной подвес и сильфонный узел для протока двух компонентов топлива, при этом в качестве указанного подвеса применен карданный подвес, имеющий раму карданного механизма, две пары осей с подшипниками, размещенными в раме в двух взаимно перпендикулярных плоскостях, и две пары вилок, соединенных с осями, при этом одна пара вилок жестко соединена с рамой двигателя, другая - с головкой камеры сгорания двигателя, при этом указанный сильфонный узел размещен внутри рамы карданного механизма и выполнен в виде двух сильфонов - внутреннего, установленного по оси двигателя и оси карданного подвеса, и наружного сильфона, концентрично размещенного относительно внутреннего, образующих между собой кольцевой канал, полость внутреннего сильфона с одной стороны соединена с полостью бака ракеты одного из компонентов топлива, с другой стороны через коллектор соединена с входной магистралью двигателя, полость кольцевого канала через изогнутый трубопровод соединена с полостью бака ракеты другого компонента, с другой стороны эта полость через коллектор соединена с входной магистралью двигателя. Изобретение обеспечивает повышение надежности, уменьшение массово-габаритных характеристик. 5 з.п. ф-лы, 2 ил.

Изобретение относится к жидкостным ракетным двигателям (ЖРД). Жидкостный ракетный двигатель содержит камеру, газогенератор, насосы, трубопроводы подачи топлива, пусковые клапаны, трубопроводы подачи управляющего газа, электропневмоклапан, при этом в трубопроводы подачи управляющего газа установлены клапаны-тройники с штуцерами входа управляющего газа, входа управляющего рабочего тела, выхода управляющего газа и рабочего тела, при этом между патрубками входа управляющего рабочего тела клапанов-тройников и трубопроводами подачи топлива после насосов установлены трубопроводы управляющего рабочего тела. В корпусе клапана-тройника выполнено седло со стороны подачи управляющего газа, установлены переходник с седлом со стороны подачи управляющего рабочего тела и затвор с фторопластовыми уплотнениями, взаимодействующими с седлами. Изобретение обеспечивает упрощение конструкции и снижение массы. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области машиностроения, а именно к области организации схем подачи топлива к устройствам для сжигания и устройствам для получения продуктов сгорания высокого давления или высокой скорости. Комбинированная насосно-вытеснительная схема подачи жидких компонентов гидрореагирующего топлива (ГРГ) к потребителю, содержащая потребитель с системой охлаждения, насос окислителя, турбину привода насоса окислителя, которая приводится во вращение потоком продуктов реакции горючего и окислителя, бак с горючим, герметично разделенный на полость с гидрореагирующим горючим и полость для вытесняющего тела с помощью сильфона, мешка или подвижной или эластичной перегородки, соединительные магистрали, магистрали подвода и отвода компонентов топлива, клапаны, регулирующие и управляющие органы, при этом окислитель используется в качестве вытесняющего тела для подачи жидкого гидрореагирующего горючего к потребителю, при этом окислитель для вытеснения жидкого гидрореагирующего горючего из бака отбирается из системы охлаждения потребителя, чем обуславливается его высокая температура. В качестве дополнительной поверхности теплообмена между вытесняющим окислителем и ГРГ в баке организуют полости для вытесняющего гидрореагирующее горючее окислителя, ограничивающие поверхности которых хотя бы частично контактируют с гидрореагирующим горючим в баке. Турбина привода насоса окислителя может приводиться в движение перегретым водяным паром, отобранным из системы охлаждения потребителя. Схема может содержать теплообменник. Изобретение обеспечивает снижение массы системы подачи и уменьшение занимаемого ею объема, снижение затрат энергии на подачу и подготовку к подаче ГРГ к потребителю, упрощение обеспечения многорежимности работы системы, улучшение управляемости и устойчивости подводных или двухсредных аппаратов, в составе которых используется изобретение, и упрощение и удешевление конструкции системы подачи. 3 з.п. ф-лы, 2 ил.

Изобретение относится к космической технике, а именно к аммиачным корректирующим двигательным установкам с электротермическими микродвигателями, устанавливаемым на меневрирующих малых космических аппаратах. Корректирующая двигательная установка с электротермическим микродвигателем, содержащая топливный бак с топливом, электроклапан цилиндрической формы на расходном трубопроводе бака, фильтр, подогреватель топлива в виде испарителя с нагревательным элементом, регулятор давления, электротермический микродвигатель и соединяющие трубопроводы, в соответствии с изобретением часть расходного трубопровода бака выполнена в виде спирального трубопровода, расположенного на наружной поверхности цилиндрической оболочки и контактирующего с ней при помощи теплопроводящих узлов в виде, например, паяного соединения, при этом во внутренней полости оболочки соосно смонтирован электроклапан, наружная поверхность которого через теплопроводящие узлы в виде, например, теплопроводной пасты, контактирует с внутренней поверхностью цилиндрической оболочки, причем входной патрубок спирального трубопровода соединен с расходным трубопроводом бака, а выходной - с фильтром, соединенным с входным штуцером электроклапана, выходной штуцер которого соединен с входным штуцером первого независимого винтового газовода, выполненного в виде пружины на цилиндрическом корпусе нагревательного элемента и контактирующей с ней поверхности цилиндрического отверстия во внутреннем корпусе испарителя, выходной штуцер которого соединен с входным штуцером регулятора давления, выход которого соединен с входным штуцером второго независимого винтового газовода, выполненного в виде двухзаходной резьбы на наружной поверхности внутреннего корпуса испарителя, контактирующей с внутренней поверхностью основного корпуса, выходной штуцер которого соединен с входом в микродвигатель. Изобретение обеспечивает повышение удельного импульса тяги микродвигателя, сокращение запасов топлива и количества включений для выработки топлива. 7 ил.

Изобретение относится к области ракетного двигателестроения и может быть использовано в турбонасосных агрегатах (ТНА) жидкостных ракетных двигателей с продолжительным временем работы при использовании любых компонентов топлива, как высококипящих, так и низкокипящих. Центробежная турбина содержит корпус, диск рабочего колеса центробежной турбины с лопаточным венцом и бандажом, сопловой аппарат, согласно изобретению на диске рабочего колеса центробежной турбины 3 с противоположной стороны от лопаточного венца 6 с бандажом выполнен выступ-противовес 5, образующий лабиринтное уплотнение 11 с корпусом турбины 1 и равный по массе лопаточному венцу с бандажом. Изобретение обеспечивает упрощение конструкции, снижение веса ТНА, повышение надежности при длительной работе ТНА на высоких скоростях вращения и при высоких температурах рабочего тела после газогенератора, устранение осевой силы, действующей на турбину. 1 ил.

Изобретение относится к области ракетных двигателей, более конкретно к системе подачи ракетного топлива в ракетный двигатель (2), включающей в себя первый бак (3), второй бак (4), первую систему питания (6), соединенную с первым баком (3), и вторую систему питания (7), соединенную со вторым баком (4). Для охлаждения ракетного топлива, содержащегося во втором баке (4), первая система питания (6) включает в себя ответвление (12), проходящее через первый теплообменник (14), встроенный во второй бак (4). Изобретение также относится к способу подачи ракетного топлива в ракетный двигатель (2). Изобретение обеспечивает поддержание давления внутри баков выше минимального предела. 2 н. и 12 з.п. ф-лы, 9 ил.
Наверх