Патенты автора Динариев Олег Юрьевич (RU)

Изобретение относится к области изучения свойств смачивания. Для определения равновесной смачиваемости поверхности раздела пустотного пространства и твердой фазы образца горной породы получают трехмерное изображение внутренней структуры образца. На полученном изображении внутренней структуры образца выделяют пустотное пространство и твердую фазу. Определяют поверхность раздела пустотного пространства и твердой фазы образца и распределение минералов на этой поверхности. Определяют смачиваемость твердой фазы в каждой точке поверхности раздела пустотного пространства и твердой фазы образца горной породы. Численно моделируют процесс миграции нефти в пустотное пространство, заполненное пластовой водой на начальном этапе формирования нефтегазового месторождения, и, наконец, определяют равновесную смачиваемость поверхности раздела пустотного пространства и твердой фазы образца горной породы. Технический результат – повышение информативности получаемых данных. 13 з.п. ф-лы, 2 ил.

Изобретение относится к области исследования свойств горных пород. При этом осуществляют отбор по меньшей мере одного образца породы пласта-коллектора и на отобранном образце породы определяют плотность, пористость и компонентный состав породы. Но основе полученных значений создают петрофизическую модель породы пласта-коллектора. Измеряют теплопроводность образца. Используя созданную петрофизическую модель пласта-коллектора, рассчитывают теплопроводность образца породы. Сравнивают измеренную и рассчитанную теплопроводности образца породы и в случае совпадения значений измеренной и рассчитанной теплопроводностей определяют механические свойства породы, используя созданную петрофизическую модель пласта-коллектора. В случае наличия расхождения между значениями измеренной и рассчитанной тепловодности, по меньшей мере один раз осуществляют адаптацию созданной петрофизической модели пласта-коллектора путем изменения параметров модели. Используют адаптированную петрофизическую модель для расчета теплопроводности образца породы и сравнивают измеренную и рассчитанную теплопроводности до обеспечения совпадения значений измеренной и рассчитанной теплопроводностей. При совпадении значений измеренной и рассчитанной теплопроводностей определяют механические свойства породы, используя адаптированную петрофизическую модель пласта-коллектора. Достигается повышение эффективности и качества оценки свойств пласта за счет обеспечения возможности расчета значений неизвестных или не полностью известных механических и/или вмещающих свойств резервуара. 14 з.п. ф-лы, 7 ил.,1 табл.

Изобретение относится к способам геофизических исследований скважин для нефтяных залежей с газовыми шапками с известным минералогическим составом слагающих пород. Для определения характеристик газонефтяной переходной зоны берут по меньшей мере по одной пробе из газовой части и из нефтяной части залежи. Измеряют пластовые температуру и давление в местах взятия проб пластовых флюидов и определяют плотности и составы взятых проб. Полученные плотности, составы и измеренные значения давления и температуры используют для настройки уравнения состояния углеводородных смесей. Измеряют пористость, водонасыщенность и общее водородсодержание насыщенной породы вдоль ствола скважины. По измеренным значениям пористости и водонасыщенности породы вычисляют объем углеводородных фаз, а по измеренным значениям общего водородсодержания насыщенной породы определяют водородсодержание углеводородных фаз. Используя уравнение состояния углеводородных смесей, вычисляют плотность и состав углеводородных фаз вдоль скважины. По вычисленным значениям плотности и составу углеводородных фаз вдоль скважины определяют удельное водородсодержание в газе и нефти вдоль скважины. На основе определенного удельного водородсодержания, водородсодержания углеводородных фаз и измеренной пористости определяют распределение насыщенностей газа и нефти вдоль скважины. 5 з.п. ф-лы, 2 табл., 4 ил.

Изобретение относится к области исследования состава жидкостей и материалов с содержанием не менее двух компонентов, в частности к способам определения количественного состава многокомпонентных сред. В соответствии со способом определения количественного состава многокомпонентной среды, состоящей из по меньшей мере двух известных несмешивающихся компонентов, предварительно определяют температурные зависимости удельной теплоемкости каждого из компонентов и взвешивают образец многокомпонентной среды. Определяют удельную теплоемкость образца при по меньшей мере i-1 уровнях температур, где i - количество компонентов многокомпонентной среды. На основе результатов определения удельной теплоемкости при различных температурах и температурных зависимостей удельной теплоемкости компонентов рассчитывают весовые коэффициенты для каждого компонента среды. Количественное содержание каждого из компонентов многокомпонентной среды определяют на основе полученных значений весовых коэффициентов компонентов. Техническим результатом является обеспечение возможности определения количественного состава многокомпонентной среды с высокой точностью и без разрушения образца, а также при известной пористости предлагаемый способ позволяет определить насыщенность материала различными флюидами. 13 з.п. ф-лы, 1 ил., 1 табл.

Использование: для измерения локального изменения концентрации примеси в потоке жидкости на входе в измерительную ячейку. Сущность заключается в том, что сначала определяют изменение концентрации примеси во времени внутри измерительной ячейки для жидкости, содержащей примесь, изменение концентрации которой во времени на входе в измерительную ячейку известно, и находят импульсный отклик измерительной ячейки методом деконволюции. Затем определяют изменение концентрации примеси внутри измерительной ячейки для исследуемой жидкости с неизвестной концентрацией примеси на входе. Вычисляют неизвестную концентрацию примеси на входе в измерительную ячейку с использованием найденного импульсного отклика измерительной ячейки и определенного изменения концентрации примеси внутри ячейки. Технический результат: повышение точности определения концентрации примеси без изменений конфигурации измерительной ячейки. 7 з.п. ф-лы, 5 ил.

Изобретение относится к области исследования свойств пористых материалов, в частности к методам определения величины смачиваемости и распределения пор по размерам
Изобретение относится к разработке газоконденсатных месторождений и может быть использовано для определения текущей конденсатонасыщенности в призабойной зоне скважины в пласте-коллекторе
Изобретение относится к области нефтяной промышленности, в частности к способам разработки нефтяных залежей с газовой шапкой
Изобретение относится к области нефтедобывающей промышленности и может быть использовано для разработки многопластовых нефтяных месторождений, особенно, если их пласты обладают малой нефтенасыщенной толщиной, низкой проницаемостью и содержат нефти повышенной вязкости
Изобретение относится к области нефтяной промышленности и может найти применение при разработке нефтяных залежей с подошвенной водой

 


Наверх