Патенты автора Соломенцев Кирилл Юрьевич (RU)

Изобретение относится к электрическим измерениям, а именно к измерениям сопротивления изоляции электрических сетей любого рода тока, находящихся под рабочим напряжением или обесточенных и изолированных от «земли». Контролируемыми сетями могут быть сети постоянного тока, переменного тока и двойного рода тока. Технический результат предлагаемого изобретения заключается в том, что становится возможным использование большого коэффициента передачи П-регулятора с сохранением устойчивости САР, в результате чего повышается точность и скорость регулирования. Устройство обладает высоким быстродействие, которое проявляется, когда контролируемая сеть имеет большую ёмкость относительно земли. 3 ил.

Способ относится к электрическим измерениям и может быть использован для точного измерения вещественной и мнимой составляющих переменного напряжения. Способ измерения вещественной и мнимой составляющих переменного напряжения заключается в том, что измеряемое напряжение подают на инвертирующий вход сумматора, компенсирующее напряжение подают на неинвертирующий вход сумматора, разностный сигнал усиливают с предельно большим коэффициентом усиления, в результате чего получаются прямоугольные импульсы или последовательность логических сигналов, которые обрабатывают и выделяют основную гармонику. Выделяют знаки (+ или –) вещественной и мнимой составляющих основной гармоники. Анализируя эти знаки, реализуют шаги итерационной последовательности метода средних точек. Метод средних точек является двумерным аналогом метода половинного деления. Шаги выполняются до тех пор, пока не будет достигнута заданная точность. Метод позволяет найти компенсирующее переменное напряжение, максимально приближенное к измеряемому переменному напряжению. По окончании выполнения итерационной последовательности очередная точка s считается найденным значением. Вещественная составляющая Re(s) соответствует вещественной составляющей измеряемого тока, а мнимая составляющая Im(s) соответствует мнимой составляющей измеряемого тока. Техническим результатом при реализации заявленного решения является повышение точности, разрешающей способности и чувствительности, уменьшение погрешности измерения вещественной и мнимой составляющих переменного напряжения, повышение надежности устройства, реализующего способ. 8 ил.

Изобретение относится к электроизмерительной технике и может быть использовано для измерения малых токов инфранизких частот бесконтактным способом. Устройство ориентировано на использование в составе системы пофидерного контроля электрических сетей. Устройство содержит трансформатор тока с первичной обмоткой, измерительной обмоткой и компенсационной обмоткой, операционный усилитель, преобразователь напряжение-ток, делитель, ЦАП, блок микроконтроллера, в состав которого входит АЦП. Измерительная обмотка одним выводом подключена к общему проводу, другим выводом подключена к первому входу операционного усилителя. Выход операционного усилителя соединен с входом преобразователя напряжение-ток и с входом АЦП. Выход преобразователя напряжение-ток подключен к компенсационной обмотке. Один информационный выход блока микроконтроллера подключен к входу ЦАП, выход которого подключен к входу делителя, выход которого подключен к второму входу операционного усилителя. Другой информационный выход блока микроконтроллера является выходом устройства. Технический результат заключается в том, что за счет введенных блоков операционный усилитель может работать без местной отрицательной обратной связи, то есть с очень большим коэффициентом усиления, что приводит к повышению точности. 1 ил.

Изобретение относится к электроизмерительной технике и может быть использовано для определения расстояний до вновь появившихся неоднородностей и мест повреждения воздушных линий (ВЛ) электропередачи. Cущность: на стадии формирования образцовой рефлектограммы многократно в испытуемую линию посылают зондирующие импульсы напряжения, принимают отраженные сигналы, для каждой точки рефлектограммы производят усреднение. После этого запоминают образцовую рефлектограмму. Далее для каждой точки рефлектограммы находят среднеквадратичное отклонение, умножают его на константу, выбираемую с учетом правила трех сигм. При этом получают массив пороговых значений, записывают массив пороговых значений. На стадии текущей работы снимают текущую рефлектограмму, затем находят разностную рефлектограмму, каждая точка которой получается как разность по модулю значения текущей рефлектограммы и соответствующего значения образцовой рефлектограммы. Каждую точку разностной рефлектограммы сравнивают с соответствующим пороговым значением из массива пороговых значений. Вывод о повреждении или наличии неоднородности в ВЛ делают в том случае, если значение в какой-либо точке разностной рефлектограммы превысило соответствующее пороговое значение. Вычисление расстояния до появившейся неоднородности или места повреждения выполняется по номеру первой точки разностной рефлектограммы, значение в которой превысило пороговое значение. Технический результат: повышение чувствительности.

Изобретение относится к электроизмерительной технике и может быть использовано для подключения рефлектометрического устройства к воздушным линиям (ВЛ) электропередачи, в том числе находящихся под рабочим напряжением, к которым подключена аппаратура высокочастотной (ВЧ) связи подстанции, с целью определения места повреждения или неоднородностей ВЛ. Сущность: в исходном состоянии аппаратура ВЧ связи соединена с ВЛ через конденсатор связи, фильтр присоединения и нормально-замкнутый первый электромагнитный ключ. Дополнительно используются два электронных и два электромагнитных ключа, которые в исходном состоянии разомкнуты. Перед началом рефлектометрического измерения создают путь для прохождения высокочастотного сигнала параллельно замкнутому первому электромагнитному ключу, для чего замыкают последовательно соединенные введенные второй электромагнитный ключ, первый электронный ключ, третий электромагнитный ключ. После этого размыкают первый электромагнитный ключ. Затем размыкают первый электронный ключ, замыкают второй электронный ключ, который обеспечивает связь рефлектометрического устройства с ВЛ. После рефлектометрического измерения восстанавливают исходное состояние. Технический результат: уменьшение времени отсутствия ВЧ связи во время формирования зондирующего импульса и приема рефлектограммы и тем самым повышение электромагнитной совместимости аппаратуры ВЧ связи и рефлектометрического устройства. 1 ил.

Изобретение относится к электроизмерительной технике и может быть использовано для определения топологии воздушных линий электропередачи (ЛЭП), то есть для определения наличия ответвлений, расстояний до присоединений, длин ответвлений. Сущность: в линию подают зондирующие импульсы. Отраженные от неоднородностей импульсы поступают в приемно-регулирующее устройство, потом в измерительное устройство для анализа рефлектограммы. Используя начальный участок рефлектограммы, определяют значение частоты следования отраженных импульсов, соответствующее неоднородностям неразветвленной линии. Наличие ответвления определяют по скачкообразному увеличению частоты следования отраженных импульсов на рефлектограмме. Место присоединения ответвления уточняется по наличию импульса отрицательной полярности на рефлектограмме. Место конца ответвления определяется по скачкообразному уменьшению частоты следования отраженных импульсов. Длина ответвления определяется по уточненному месту присоединения и месту конца ответвления. Технический результат: расширение функциональных возможностей. 4 ил.

Изобретение относится к электроизмерительной технике и может быть использовано для определения расстояний до мест повреждения и неоднородностей линий электропередачи. Технический результат: повышение чувствительности к неоднородностям или к незначительным локальным ухудшениям сопротивления изоляции. Сущность: в испытуемую линию посылают зондирующие импульсы напряжения, принимают отраженные сигналы, запоминают их в виде образцовой рефлектограммы. Для определения места повреждения снимают текущую рефлектограмму. Затем текущую рефлектограмму вычитают из образцовой рефлектограммы. Вывод о повреждении линии делают при наличии разностных сигналов. Образцовая рефлектограмма, а также текущая рефлектограмма, представляют собой значения напряжения, полученные через шаг дискретизации по времени, которые хранятся в ячейках памяти в формате с плавающей запятой. Весь измерительный интервал времени разбивается на некоторое количество частичных интервалов времени, кратных шагу дискретизации по времени. Перед каждым измерительным циклом получения образцовой рефлектограммы и текущей рефлектограммы производят оценку оптимальных коэффициентов передачи входного устройства для каждого частичного интервала времени. Для этого, установив минимальный коэффициент передачи входного устройства, получают промежуточную рефлектограмму, с помощью которой для каждого частичного интервала времени выбирают максимальный допустимый коэффициент передачи входного устройства. В процессе получения образцовой рефлектограммы и текущих рефлектограмм для каждого частичного интервала времени устанавливают выбранный коэффициент передачи входного устройства с помощью быстродействующих переключателей. 1 ил.

Изобретение относится к электроизмерительной технике и может быть использовано для определения расстояний до неоднородностей и мест повреждения протяженных линий электропередачи. Сущность: в испытуемую линию посылают зондирующие импульсы напряжения, принимают отраженные сигналы, запоминают образцовую рефлектограмму, полученную с неповрежденной линии. Снимают текущую рефлектограмму, содержащую отраженные сигналы от естественных неоднородностей и неоднородностей, возникших при повреждении линии, затем вычитают ее из образцовой рефлектограммы, делая вывод о повреждении линии при наличии разностных сигналов. После получения текущей рефлектограммы и записи ее в массив производят масштабирование по времени этого массива, для осуществления которого для каждых двух значений напряжения, соответствующих смежным моментам времени, производят сплайн-интерполяцию, в результате чего получается интерполяционная непрерывная функция. Затем вводят коэффициент масштабирования по времени, при этом изменение коэффициента масштабирования по времени осуществляют по одному из известных алгоритмов оптимизации. Для различных значений коэффициента масштабирования по времени многократно получают новые масштабированные массивы, которые сравниваются с образцовой рефлектограммой до достижения минимальной разницы между ними. Технический результат: уменьшение погрешности в случае испытаний длинных линий. 2 ил.

Изобретение относится к электроизмерительной технике и предназначено для измерения сопротивления изоляции электрических сетей любого рода тока, находящихся под рабочим напряжением или обесточенных и изолированных от «земли». Согласно заявленному способу цикл измерения состоит из двух полуциклов. В начале первого полуцикла к контролируемой сети подключают источник регулируемого постоянного тока, по двум измеренным значениям напряжения вычисляют эквивалентную емкость и длительность интервала времени, необходимого для окончания переходного процесса. В соответствии с этим устанавливают временные интервалы процесса измерения. В конце первого полуцикла запоминают значения тока и среднего напряжения в точке подсоединения к контролируемой сети. В начале второго полуцикла изменяют направление тока источника регулируемого постоянного тока, производят аналогичные действия и обрабатывают результаты измерений по формуле, вычисляя величину сопротивления изоляции сети. Устройство для измерения сопротивления изоляции электрических сетей реализует указанный способ. Устройство содержит блок управления, первый блок управляемого тока, второй блок управляемого тока, блок подсоединения, регулируемый источник напряжения, блок фильтрации, блок измерения тока, блок измерения напряжения, блок вычисления емкости, блок формирования интервалов времени и выходное устройство. Технический результат заключается в уменьшении времени измерения сопротивления изоляции при наличии в контролируемой сети малых емкостей. 2 н.п. ф-лы, 1 ил.

Изобретение относится к электрическим измерениям, а именно к измерениям сопротивления изоляции электрических сетей, находящихся под рабочим напряжением или обесточенных и изолированных от «земли». Способ измерения сопротивления изоляции электрических сетей, заключающийся в том, что к контролируемой сети подключают источник постоянного тока неизменного значения, производят заряд емкости сети до заданного напряжения, отключают источник постоянного тока неизменного значения, подключают источник измерительного постоянного напряжения заданного значения и вычисляют оценку установившегося значения тока i1yст с помощью экстраполяции, для этого производят измерения тока i1, i2, i3 в три различных момента времени t1, t2, t3, причем t3/t2=t2/t1, вычисляют оценку установившегося значения тока i1yст, используя значения тока i1 i2, i3. Затем к контролируемой сети подключают источник постоянного тока неизменного значения противоположной полярности. Производят заряд емкости сети до заданного напряжения противоположной полярности. Отключают источник постоянного тока неизменного значения. Подключают источник измерительного постоянного напряжения заданного значения противоположной полярности. Затем вычисляют оценку установившегося значения тока i2уст с помощью экстраполяции, для этого производят измерения тока i4, i5, i6 в три различных момента времени t4, t5, t6, используя значения тока i4, i5, i6, вычисляют оценку установившегося значения тока i2уст и обрабатывают результаты измерений. 3 ил.

Изобретение относится к электроизмерительной технике и предназначено для измерения сопротивления изоляции электрических сетей переменного тока, находящихся под напряжением и изолированных от земли. Устройство содержит источник измерительного напряжения, миллиамперметр, блок гальванической развязки, блок вычитания, блок управления, управляемый источник переменного напряжения, первый ключ, второй ключ, токоограничивающий резистор. Причем два входа блока гальванической развязки подключены к двум фазам контролируемой сети, между которыми действует переменное напряжение. Выход блока гальванической развязки подключен ко второму входу блока управления, выход которого подключен к входу управляемого источника переменного напряжения, первый выход которого подключен к второму выводу токоограничивающего резистора, первый вывод которого подключен ко второму выходу источника измерительного напряжения. Второй выход управляемого источника переменного напряжения подключен через миллиамперметр к земле. Первый выход источника измерительного напряжения через первый ключ подключен к любой фазе контролируемой сети. Первый вход блока вычитания подключен к первому выходу управляемого источника переменного напряжения, а выход блока вычитания через второй ключ подключен к первому входу блока управления. Технический результат заключается в уменьшении погрешности и времени измерения сопротивления изоляции. 3 ил.

Изобретение относится к технике оттаивания, подогрева и сушки сыпучих материалов, преимущественно песка и гравия, и может быть использовано в различных отраслях промышленности, например, при производстве бетонных изделий на асфальтобетонных и строительных предприятиях

Изобретение относится к электрическим измерениям, а именно к измерениям сопротивления изоляции электрических сетей любого рода тока, находящихся под рабочим напряжением или обесточенных и изолированных от "земли"

Изобретение относится к электрическим измерениям, а именно к измерениям сопротивления изоляции электрических сетей любого рода тока, находящихся под рабочим напряжением или обесточенных и изолированных от «земли»

 


Наверх