Устройство для измерения сопротивления изоляции сетей переменного тока

Изобретение относится к электроизмерительной технике и предназначено для измерения сопротивления изоляции электрических сетей переменного тока, находящихся под напряжением и изолированных от земли. Устройство содержит источник измерительного напряжения, миллиамперметр, блок гальванической развязки, блок вычитания, блок управления, управляемый источник переменного напряжения, первый ключ, второй ключ, токоограничивающий резистор. Причем два входа блока гальванической развязки подключены к двум фазам контролируемой сети, между которыми действует переменное напряжение. Выход блока гальванической развязки подключен ко второму входу блока управления, выход которого подключен к входу управляемого источника переменного напряжения, первый выход которого подключен к второму выводу токоограничивающего резистора, первый вывод которого подключен ко второму выходу источника измерительного напряжения. Второй выход управляемого источника переменного напряжения подключен через миллиамперметр к земле. Первый выход источника измерительного напряжения через первый ключ подключен к любой фазе контролируемой сети. Первый вход блока вычитания подключен к первому выходу управляемого источника переменного напряжения, а выход блока вычитания через второй ключ подключен к первому входу блока управления. Технический результат заключается в уменьшении погрешности и времени измерения сопротивления изоляции. 3 ил.

 

Изобретение относится к электроизмерительной технике и предназначено для измерения сопротивления изоляции электрических сетей переменного тока, находящихся под напряжением и изолированных от земли.

Известно устройство для измерения сопротивления изоляции сети [А.С. СССР №118896, кл. 21е, 2901, 21e, 3610, 59 г.], работа которого основана на нахождении эквипотенциальных точек на потенциометре, включаемом между проводами сети, при помощи высокоомного измерительного прибора, который включен в электрическую цепь последовательно со вспомогательным источником постоянного тока и движком указанного потенциометра.

В этом устройстве с помощью движка потенциометра отыскивается нулевой потенциал, благодаря чему напряжение сети не оказывает влияния на измерительную цепь.

Однако недостатком данного устройства является большое время измерения в случае, если емкость фаз относительно земли большая. При очень большой емкости фаз относительно земли измерения становятся нецелесообразными, следовательно, устройство имеет ограниченные функциональные возможности. В процессе измерения, после подключения вспомогательного источника постоянного тока, необходимо выждать время, пока зарядятся емкости фаз сети относительно земли. Постоянная времени цепи заряда емкостей зависит от величины суммарной емкости фаз и от сопротивления потенциометра. Для получения маленькой постоянной времени, на первый взгляд, можно уменьшить сопротивление потенциометра, при этом возрастает ток, текущий через потенциометр, возрастает мощность, рассеиваемая на потенциометре, снижается надежность.

Наиболее близким по технической сущности к предлагаемому изобретению (прототип) является устройство [Иванов Е.А., Кузнецов С.Е. Методы контроля изоляции судовых электроэнергетических систем. Учебное пособие. - СПб.: «Элмор», 1999. с.49, 50] для измерения сопротивления изоляции в сетях переменного тока, принцип действия которого основан на использовании метода наложения постоянного измерительного напряжения. Устройство содержит индуктивный или емкостный фильтр R1, Cf, источник измерительного напряжения E, миллиамперметр А. Фильтр R1, Cf необходим в связи с тем, что в точке подключения к контролируемой сети действует переменная составляющая напряжения, а для проведения измерений необходимо устранить влияние переменной составляющей напряжения на измерительные цепи.

Недостатком данного устройства является большое время измерения в случае, если емкости фаз сети относительно земли большие. При очень большой емкости фаз относительно земли измерения становятся нецелесообразными, следовательно, устройство имеет ограниченные функциональные возможности. Длительность переходных процессов, возникающих при накладывании постоянного измерительного напряжения, прямо пропорциональна сопротивлению R1 и емкости фаз сети относительно земли. Если для уменьшения времени измерения уменьшить сопротивление R1 для уменьшения времени переходного процесса, то за счет того, что к нему приложено большое переменное напряжение, возрастет рассеиваемая на нем мощность. При этом снижается надежность. Кроме этого, если снижать сопротивление R1, то будет возрастать влияние переменной составляющей напряжения на измерительные цепи, то есть возрастет переменная составляющая тока в измерительной цепи, при этом будет возрастать погрешность.

Задачей предлагаемого изобретения является расширение функциональных возможностей. Технический результат заключается в уменьшении погрешности и времени измерения сопротивления изоляции.

Поставленная задача достигается за счет того, что в устройство для измерения сопротивления изоляции сетей переменного тока, содержащее источник измерительного напряжения, миллиамперметр, дополнительно введены блок гальванической развязки, блок вычитания, блок управления, управляемый источник переменного напряжения, первый ключ, второй ключ, токоограничивающий резистор, причем два входа блока гальванической развязки подключены к двум фазам контролируемой сети, между которыми действует переменное напряжение, выход блока гальванической развязки подключен ко второму входу блока управления, выход блока управления подключен к входу управляемого источника переменного напряжения, первый выход которого подключен к второму выводу токоограничивающего резистора, первый вывод которого подключен ко второму выходу источника измерительного напряжения, второй выход управляемого источника переменного напряжения подключен через миллиамперметр к земле, первый выход источника измерительного напряжения через первый ключ подключен к любой фазе контролируемой сети, первый вход блока вычитания подключен к первому выходу управляемого источника переменного напряжения, выход блока вычитания через второй ключ подключен к первому входу блока управления.

На фиг.1 приведена схема устройства 1, подключенного к контролируемой сети 2. На фиг.2 и фиг.3 приведены временные диаграммы, поясняющие принцип действия предлагаемого устройства 1.

Устройство 1 содержит блок гальванической развязки 3, блок вычитания 4, блок управления 5, управляемый источник переменного напряжения 6, миллиамперметр 7, источник измерительного напряжения 8, токоограничивающий резистор 9, первый ключ 10, второй ключ 11. Контролируемая сеть 2 содержит источники напряжения 12, 13, 14 сопротивления нагрузки 15, 16, 17, сопротивления изоляции каждой фазы 18, 19, 20, емкости каждой фазы 21, 22, 23. Два входа блока гальванической развязки 3 подключены к двум фазам контролируемой сети 2, между которыми действует переменное напряжение. Выход блока гальванической развязки 3 подключен ко второму входу блока управления 5. Выход блока управления 5 подключен к входу управляемого источника переменного напряжения 6, первый выход которого подключен ко второму выводу токоограничивающего резистора 9, второй выход управляемого источника переменного напряжения 6 подключен через миллиамперметр 7 к «земле». Первый вывод токоограничивающего резистора 9 подключен ко второму выходу источника измерительного напряжения 8. Первый выход источника измерительного напряжения 8 через первый ключ 10 подключен к любой фазе контролируемой сети 2. Первый вход блока вычитания 4 подключен к первому выходу управляемого источника переменного напряжения 6, выход блока вычитания 4 через второй ключ 11 подключен к первому входу блока управления 5.

Устройство 1 работает следующим образом. Устройство 1 периодически подключается к контролируемой сети 2, производит измерение эквивалентного сопротивления изоляции сети, затем отключается. В отключенном состоянии первый ключ 10 разомкнут, второй ключ 11 замкнут. В подключенном состоянии первый ключ 10 замкнут, второй ключ 11 разомкнут.

Рассмотрим работу устройства 1 в отключенном состоянии, при этом происходит подготовка к измерению. На вход блока гальванической развязки 3 поступает переменное напряжение с частотой сети. (Блок гальванической развязки 3 может быть выполнен, например, в виде трансформатора или в виде схемы оптронной развязки.) С выхода блока гальванической развязки 3 синхронизирующий сигнал поступает на второй вход блока управления 5. Этот сигнал в простейшем случае может иметь синусоидальную форму, но в общем случае может отличаться от синусоиды, и быть, например, прямоугольными импульсами. Блок управления 5 формирует управляющий сигнал для управляемого источника переменного напряжения 6, который может создавать синусоидальное напряжение, с изменяющимися в широких пределах амплитудой и фазой. Блок управления 5 вырабатывает такой сигнал управления на своем выходе, чтобы напряжение управляемого источника переменного напряжения 6 стало точно равным по амплитуде и фазе напряжению в точке подключения относительно земли Uc (напряжение сети), фиг.2. Для того чтобы можно было сравнить напряжение управляемого источника переменного напряжения 6 с напряжением сети Uc, предназначен блок вычитания 4. На его выходы подаются эти два напряжения, блок вычитания производит вычитание мгновенных значений этих двух напряжений, на его выходе образуется сигнал, равный разности этих двух напряжений. Сигнал с выхода блока вычитания 4 через второй ключ 11 поступает на первый вход блока управления 5. Таким образом, в отключенном состоянии устройства 1 производится подготовка к измерению, заключающаяся в том, что напряжение управляемого источника переменного напряжения 6 Eпер становится точно равным напряжению Uc. Алгоритм, по которому работает блок управления 5, выходит за рамки настоящего изобретения. Здесь отметим, что сигнал на выходе блока управления 5 формируется путем преобразования синхронизирующего сигнала, поступающего на второй вход. При этом блок управления стремится свести к минимуму разность Uc и Eпер.

Рассмотрим работу устройства 1 в подключенном состоянии, при этом происходит измерение эквивалентного сопротивления изоляции. Второй ключ 11 размыкается, следовательно, на первый вход блока управления 5 не поступает сигнал, равный разности Uc - Eпер. В результате амплитуда и фаза управляемого источника переменного напряжения 6 в течение времени измерения остаются неизмененными. После замыкания первого ключа 10 возникает переходный процесс с очень маленькой постоянной времени τ, которая в основном зависит от сопротивления токоограничивающего резистора 9 и суммарной емкости фаз сети 21, 22, 23 относительно земли. Сопротивление токоограничивающего резистора 9 очень мало (менее 1 Ом), поэтому постоянная времени переходного процесса тоже мала. Следовательно, уменьшается время измерения. Уменьшение сопротивления токоограничивающего резистора 9 стало возможным (по сравнению с прототипом), так как на нем не падает большое переменное напряжение, поэтому он не греется, кроме этого в измерительной цепи не возникает большой переменной составляющей тока. Через замкнутый первый ключ 10 осуществляется воздействие на контролируемую сеть 2. Напряжение воздействия равно сумме Eпер+Eизм, где Eизм - постоянное напряжение, которое вырабатывает источник измерительного напряжения 8. В результате, в каждый момент времени в точке подключения напряжение Uc на величину Eизм больше, чем напряжение Uc в свободном состоянии сети, фиг.3. Следовательно, к сопротивлениям изоляции 18, 19, 20 помимо переменного напряжения, обусловленного параметрами сети, приложено постоянное напряжение Eизм. В результате, через миллиамперметр 7 будет протекать постоянный ток, обусловленный напряжением Eизм и эквивалентным сопротивлением изоляции сети. Так как переменная составляющая напряжения Uc точно равна переменной составляющей напряжения Uc до замыкания первого ключа 10, протекающий через миллиамперметр 7 ток практически не имеет переменной составляющей с частотой сети. Благодаря этому уменьшается погрешность измерения сопротивления изоляции.

Таким образом, обеспечивается расширение функциональных возможностей.

Технический результат заключается в уменьшении погрешности измерения сопротивления изоляции и в уменьшении времени измерения сопротивления изоляции сетей переменного тока.

Устройство для измерения сопротивления изоляции сетей переменного тока, содержащее источник измерительного напряжения, миллиамперметр, отличающееся тем, что дополнительно введены блок гальванической развязки, блок вычитания, блок управления, управляемый источник переменного напряжения, первый ключ, второй ключ, токоограничивающий резистор, причем два входа блока гальванической развязки подключены к двум фазам контролируемой сети, между которыми действует переменное напряжение, выход блока гальванической развязки подключен ко второму входу блока управления, выход блока управления подключен к входу управляемого источника переменного напряжения, первый выход которого подключен к второму выводу токоограничивающего резистора, первый вывод которого подключен ко второму выходу источника измерительного напряжения, второй выход управляемого источника переменного напряжения подключен через миллиамперметр к земле, первый выход источника измерительного напряжения через первый ключ подключен к любой фазе контролируемой сети, первый вход блока вычитания подключен к первому выходу управляемого источника переменного напряжения, выход блока вычитания через второй ключ подключен к первому входу блока управления.



 

Похожие патенты:

Изобретение относится к области электротехники. Устройство содержит резистор, соединенный с нейтралью одним выводом, резистивный датчик тока, источник стабилизированного напряжения постоянного тока, шунтирующий конденсатор C1, RC-фильтр на 50 Гц, блок гальванической развязки, электронный делитель напряжения, дифференциальный усилитель, блок питания и блоки индикации и сигнализации.

Изобретение относится к области электротехники. Устройство состоит из источника измерительного стабилизированного напряжения постоянного тока, фильтра RC, состоящего из последовательно соединенных резистора и конденсатора, одного диод, шунтирующего конденсатор С1, блока гальванической развязки, усилителя напряжения сигнала с регулируемым коэффициентом усиления, блока питания, электронного делителя напряжения, блока индикации и блока сигнализации.

Изобретение относится к технике электрических измерений. Устройство содержит источник испытательного напряжения (ИИН), эталонный резистор (ЭР), зарядный ключ (ЗК), испытуемый объект (ИО), разрядный ключ (РК), разрядный резистор (РР), выходные выводы, к которым подключают ИО, двухканальный цифровой измеритель с запоминающим устройством с двумя информационными (ЦИ) и двумя управляющими входами, устройство отображения информации (УОИ), генератор тактовых импульсов (ГТИ) и блок управления (БУ) с выходами «Пуск» и «Установка нуля».

Изобретение относится к области электротехники и может быть использовано для измерения емкости между фазами и корпусом (или землей) в любых трехфазных электросетях, например в судовых.

Изобретение относится к области электротехники, а именно к релейной защите синхронных генераторов, и может быть использовано на электрических станциях для защиты синхронных генераторов от замыкания обмотки возбуждения на землю в одной точке, а также для контроля сопротивления изоляции.

Способ измерения сопротивления изоляции цепей постоянного тока, находящихся под рабочим напряжением, и устройство для его осуществления относятся к электроизмерительной технике и предназначены для использования преимущественно в автоматизированных системах контроля, диагностики и управления технологическими процессами.

Изобретение относится к электроизмерительной технике, в частности к автоматизированным системам контроля, и применяется при контроле сопротивления изоляции электрических цепей постоянного тока относительно корпуса.

Группа изобретений относится к электроизмерительной технике и предназначена для использования в автоматизированных системах контроля, диагностики и управления технологическими процессами.

Изобретение относится к контрольно-измерительной технике транспортных средств с электрической тягой, а именно к микропроцессорным системам управления и диагностики тепловозов.

Изобретение относится к электроэнергетике и предназначено для эксплуатационного контроля состояния изоляции относительно земли объектов под рабочим напряжением в трехфазных сетях с изолированной нейтралью, а также в сетях, где нейтраль заземлена через резистор или реактор.

Изобретение относится к электроизмерительной технике, в частности к автоматизированным системам контроля, и применяется при контроле сопротивления изоляции электрических цепей электро- и радиотехнических изделий, отключенных от источника питания. На первом этапе при закороченных шинах между корпусом и шинами устанавливают тестовый сигнал, существенно превосходящий уровень помех, что позволяет проводить измерения параллельно соединенных сопротивлений изоляции обеих шин с высокой точностью. На втором этапе подключают первый источник низкого уровня между шинами электропитания, который обеспечивает быстрый заряд емкости нагрузки и нейтрализацию влияния активного сопротивления нагрузки на результаты измерений. При этом малый уровень сигнала исключает повреждение потребителей энергии по цепям питания. А второй источник сигнала подключают между корпусом и одной из шин, что обеспечивает высокую точность измерений сопротивления утечки. Технический результат заключается в возможности проведения контроля с минимальными энергетическими затратами, с высоким быстродействием и с минимальным влиянием помех. 4 ил.

Изобретение относится к электротехнике и может быть использовано при создании устройств контроля изоляции сетей постоянного оперативного тока. В сети постоянного тока периодически осуществляют тестовое воздействие путем подключения к полюсам высокоточного резистора, при этом измеряют величины напряжений на полюсах и дифференциальные токи присоединений сети до и после каждого тестового воздействия. Величина сопротивления резистора регулируется исходя из условия, чтобы после его подключения напряжения полюсов относительно земли входили в диапазон допустимых значений, а ток утечки на землю через резистор не превышал установленного допустимого значения. Технический результат заключается в расширении функциональных возможностей и повышении точности измерения сопротивления изоляции, а также в повышении универсальности. 1 з.п. ф-лы, 1 ил.

Изобретение относится к электротехнике и может быть использовано при создании и применении устройств и систем измерения сопротивлений изоляции в сетях постоянного тока с изолированной нейтралью, находящихся под напряжением. Технический результат: повышение точности измерений сопротивления изоляции сети постоянного тока. Сущность: измеряют напряжение между «землей» и полюсами источника постоянного тока. Для чего сначала подключают резистивный элемент к одному из полюсов, а затем к другому, выравнивают напряжения на полюсах параллельным подключением к источнику постоянного тока двух последовательно соединенных одинаковых резисторов, общая точка которых через третий резистор соединена с «землей». При этом резистивные элементы подключают поочередно параллельно первому и второму резисторам, измеряют напряжение на третьем резисторе после подключения одного и другого резистивных элементов. Далее определяют сопротивление изоляции всей сети, а затем для каждого из полюсов. 1 ил.

Изобретение относится к электротехнике и может быть использовано при создании устройств контроля и измерения сопротивления изоляции сетей переменного тока с изолированной нейтралью. Технический результат: расширение функциональных возможностей за счет измерения сопротивлений изоляции присоединений, уменьшение величины перекоса напряжений между фазами и «землей», возникающих при определении сопротивления изоляции сети и сопротивления изоляции присоединений. Сущность: измеряют средние значения напряжения между положительным и отрицательным полюсами трехфазного выпрямительного моста, собранного на полупроводниковых диодах по схеме Ларионова и подключенного к фазам сети переменного тока, а также между положительным и отрицательным полюсами трехфазного выпрямительного моста и «землей». При этом производят выравнивание напряжений на фазах сети путем включения параллельно полюсам трехфазного выпрямительного моста двух последовательно соединенных первого и второго резисторов, общая точка которых соединена с «землей». Измеряют среднее значение тока через провод, соединяющий общую точку первого и второго резисторов с «землей», измеряют средние значения дифференциальных токов, протекающих по присоединениям сети, с помощью датчиков дифференциальных токов для измерений средних значений токов, после подключения сначала к одному из полюсов трехфазного выпрямительного моста третьего резистора, один из выводов которого подсоединен к общей точке первого и второго резисторов, а потом к другому полюсу трехфазного выпрямительного моста четвертого резистора, один из выводов которого подсоединен к общей точке первого и второго резисторов. Значения сопротивлений изоляции всей сети в целом и сопротивления изоляции присоединений определяют из соответствующих выражений. 11 ил.

Изобретение относится к контрольно-измерительной технике и может быть использовано для контроля сопротивления изоляции многофазных разветвленных сетей переменного тока с изолированной нейтралью, находящихся под напряжением. Техническим результатом является осуществление избирательного контроля утечки или замыкания фазы на землю в разветвленной системе электроснабжения с изолированной нейтралью, выявление элемента с поврежденной изоляцией до появления аварийного режима. Устройство контроля изоляции сети электроснабжения с изолированной нейтралью содержит высоковольтные провода подключения, контактор измерительной цепи, контактор заземления. Параллельно контактам контактора заземления подключен диодный мост с модулятором поискового тока. При этом обеспечивается возможность подключения фазы сети электроснабжения через коммутационный переключатель, токоограничивающий конденсатор, контакт контактора измерительной цепи и контакт контактора заземления к контуру заземления. 1 з.п. ф-лы, 2 ил.

Изобретение относится к электроизмерительной технике, в частности к автоматизированным системам контроля, и применяется для контроля сопротивления изоляции шин питания гальванически развязанных источников постоянного тока относительно корпуса и между собой. Техническим результатом изобретения является повышение достоверности определения значений сопротивления изоляции относительно корпуса, а также возможность контроля изоляции шин нескольких гальванически развязанных источников постоянного тока как относительно корпуса, так и между собой как в выключенном, так и во включенном состоянии. Способ измерения сопротивления изоляции в цепях постоянного тока основан на подключении к полюсам цепи постоянного тока цепи резисторов, состоящей из двух последовательно соединенных резисторов с одинаковой величиной сопротивления. В место соединения резисторов включается измерительная цепь из последовательно включенных источника измерительного напряжения и измерителя тока. Далее определяется эквивалентное сопротивление цепи резисторов. В измерительную цепь включают источник измерительного напряжения с одним значением напряжения, величина которого может быть равна нулю, затем с другим, отличным от нуля. Определяют значения измерительных токов для двух значений измерительных напряжений, вычисляют алгебраическую разность измерительных напряжений, делят ее на алгебраическую разность измеренных токов и из результата деления, взятого по модулю, вычитают значение эквивалентного сопротивления. Для измерения сопротивления изоляции между двумя гальванически развязанными источниками постоянного тока подключают между местами соединения двух цепочек резисторов с одинаковыми величинами сопротивлений, включенных между полюсами соответствующих источников постоянного тока, при этом вычитаемое эквивалентное сопротивление равно номинальному значению сопротивлений резисторов цепочек. Способ измерения сопротивления изоляции реализуется в устройстве, которое содержит цепочку из одинаковых резисторов, включенных последовательно, подключаемую к полюсам источника постоянного тока для измерения его сопротивления изоляции относительно корпуса, измерительную цепь, состоящую из последовательно включенных источника измерительного напряжения и датчика тока, а также коммутатора измерительного напряжения, имеющего вход управления, контроллера с аналоговым входом, подключенным к датчику тока, и выходом контроллера, имеющим электрическую связь с входом управления коммутатора измерительного напряжения. Дополнительно введены два коммутатора, каждый из которых имеет n+1 вход, один выход и вход управления, резистор, подключенный между n+1 входом первого коммутатора и n+1 входом второго коммутатора, устройство последовательного интерфейса. Кроме этого, введены n-1 дополнительных цепочек последовательно соединенных резисторов, измерительная цепь подключена между выходами введенных коммутаторов, а коммутатор измерительного напряжения своим выходом подключен параллельно источнику измерительного напряжения. 2 н.п. ф-лы, 1 ил.

Изобретение относится к электроизмерительной технике и предназначено для измерения сопротивления изоляции электрических сетей переменного тока, находящихся под напряжением и изолированных от земли. Устройство содержит источник измерительного напряжения, миллиамперметр, блок гальванической развязки, блок вычитания, блок управления, управляемый источник переменного напряжения, первый ключ, второй ключ, токоограничивающий резистор. Причем два входа блока гальванической развязки подключены к двум фазам контролируемой сети, между которыми действует переменное напряжение. Выход блока гальванической развязки подключен ко второму входу блока управления, выход которого подключен к входу управляемого источника переменного напряжения, первый выход которого подключен к второму выводу токоограничивающего резистора, первый вывод которого подключен ко второму выходу источника измерительного напряжения. Второй выход управляемого источника переменного напряжения подключен через миллиамперметр к земле. Первый выход источника измерительного напряжения через первый ключ подключен к любой фазе контролируемой сети. Первый вход блока вычитания подключен к первому выходу управляемого источника переменного напряжения, а выход блока вычитания через второй ключ подключен к первому входу блока управления. Технический результат заключается в уменьшении погрешности и времени измерения сопротивления изоляции. 3 ил.

Наверх