Патенты автора Попов Сергей Викторович (RU)

Изобретение относится к ракетной технике и предназначено для использования в реактивных снарядах. Ракетный двигатель твердого топлива (РДТТ) содержит корпус, сопловую манжету, сопло с теплозащитным покрытием и вкладыш критического сечения сопла. Согласно изобретению теплозащитное покрытие дозвуковой части сопла выполнено на участке, ограниченном поперечным сечением, проходящем через торец сопловой манжеты, длиной 0,35…0,45 L, с утолщением, причем толщина теплозащитного покрытия на данном участке составляет 1,4…1,8 толщины теплозащитного покрытия в сечении, отстоящем от сопловой манжеты на расстояние 0,75 L, где L - расстояние от торца сопловой манжеты до торца теплозащитного покрытия у вкладыша в критическом сечении. Изобретение обеспечивает повышение надежности работы РДТТ с зарядом из высокометаллизированных топлив с большим содержанием конденсированной фазы в продуктах сгорания. 1 ил.

Изобретение относится к ракетной технике и может быть использовано при разработке стабилизаторов реактивных снарядов систем залпового огня. Стабилизатор реактивного снаряда содержит дугообразные раскрывающиеся лопасти (1) с проушинами (2), цилиндрический обтекатель (3) с пазами клиновидных фиксаторов (4). Передняя кромка каждой лопасти (1) выполнена с изломом контура и состоит из нижней (5) части, прилегающей к обтекателю (3), с углом стреловидности по отношению к нормали к продольной оси обтекателя, не превышающим 5°, и длиной 0,3…0,6 высоты развертки лопасти и верхней (6) части с углом стреловидности по отношению к нормали обтекателя, равным 10°…35°. Толщина лопасти в концевой части составляет 0,25…0,60 ее толщины в районе корневой хорды. Толщина обтекателя (3) принята равной 0,5…1,0 толщины лопасти в районе корневой хорды. Длина паза клиновидных фиксаторов (4) составляет 5…10 толщины обтекателя (3) в месте контакта его с проушинами лопастей (1). Обеспечивается создание стабилизатора PC, позволяющего увеличить дальность полета, повысить надежность функционирования, улучшить характеристики кучности и точности стрельбы за счет уменьшения разброса коэффициента сопротивления стабилизатора и подъемной силы дугообразных лопастей, улучшить аэробаллистические характеристики путем уменьшения влияния аэроупругих возмущений на элементы конструкции. 2 ил.

Изобретение относится к области ракетной техники, а именно к стабилизаторам реактивных снарядов систем залпового огня. Стабилизатор реактивного снаряда содержит обтекатель (1) с установленными на нем раскрывающимися дугообразными лопастями (2), имеющими комбинированную форму передних кромок лопастей, включающую плоское притупление (3), и ориентированными в направлении вращения снаряда выпуклыми боковыми поверхностями. Передние кромки лопастей выполнены в виде сочетания плоского притупления шириной 0,10…0,25 толщины лопасти в районе бортовой хорды и клиньев (4) и (5) с выпуклой и вогнутой боковых поверхностей, имеющих суммарный угол 10°…30° в плоскости, перпендикулярной передним кромкам. Концевая хорда лопасти составляет 0,6…1,2 ее бортовой хорды. Средний угол установки лопастей стабилизатора к продольной оси снаряда, измеряемый в различных их сечениях, выбран по формуле где β - суммарный угол заострения передних кромок раскрывающихся дугообразных лопастей стабилизатора в плоскости, перпендикулярной кромкам; d - калибр снаряда; bcp=0,5(bo+bк) - средняя хорда дугообразной лопасти; bo - бортовая хорда дугообразной лопасти; bк - концевая хорда дугообразной лопасти; Нст - размах раскрывающихся дугообразных лопастей стабилизатора; dобт - наружный диаметр обтекателя, на котором установлены дугообразные лопасти стабилизатора; nлоп=3…8 - количество дугообразных лопастей стабилизатора. Обеспечивается создание стабилизатора PC с дозвуковой и сверхзвуковой скоростью полета с повышенной надежностью функционирования, улучшенными основными характеристиками за счет уменьшения разброса аэробаллистических характеристик PC, снижения ветровой чувствительности и обеспечения безрезонансного полета с нулевыми углами атаки. 1 ил.

Одной из основных задач, решаемых при создании корпусных ракетных частей, является обеспечение заданных энергетических характеристик. Сущность изобретения заключается в том, что корпус ракетной части содержит обечайку и односопловой блок большого относительного удлинения. При этом внутри указанных элементов выполнено теплозащитное покрытие, а на входе в односопловой блок выполнены симметрично расположенные турбулизаторы в виде прямоугольных выступов теплозащитного покрытия шириной (0,24…0,35)d, высотой (0,055…0,07)d и длиной (0,4…0,55)d, где d - диаметр критического сечения односоплового блока. Выполнение корпуса ракетной части в соответствии с изобретением позволило увеличить энергетические характеристики разрабатываемой ракетной части реактивного снаряда. 1 ил.

Изобретение относится к области ракетной техники, а именно к реактивным снарядам с газодинамической системой угловой стабилизации, преимущественно для реактивных систем залпового огня. Сопла газодинамической системы установлены на цилиндрическом участке корпуса головной части и расстояние от места сопряжения его с заостренным участком корпуса до середины выходных сечений сопел составляет 0,2-2,0 калибра снаряда. Ширина выходного сечения сопла в направлении продольной оси снаряда не превышает 0,2 калибра снаряда. Выходное сечение каждого сопла утоплено в корпусе головной части и отстоит от наружной ее поверхности на величину 0,02-0,2 ширины сопла, при этом оси выходных сечений сопел расположены в плоскости, перпендикулярной продольной оси головной части, а длина заостренного участка корпуса составляет 1,5-3,5 калибра снаряда. Лопасти стабилизатора смонтированы на цилиндрическом обтекателе диаметром, превышающем в 1,05-1,15 диаметр выходного сечения сопла реактивного двигателя, а задние кромки лопастей в районе корневой хорды удалены от выходного сечения сопла на расстояние 0,3-1,0 диаметра его выходного сечения. Изобретение позволяет создать реактивный снаряд повышенной боевой эффективности с надежным функционированием за счет обеспечения максимального газодинамического стабилизирующего момента, с минимизацией веса газодинамической системы стабилизации, а следовательно, с увеличением веса боевой части, повысить точность и кучность стрельбы за счет надежного парирования угловых возмущений на начальном активном участке полета и исключения отрицательного воздействия струи реактивного двигателя на лопасти и аэродинамические характеристики стабилизатора, обеспечить улучшение аэробаллистических характеристик снаряда. 3 ил.
Изобретение относится к области экологии, в частности к сорбционной очистке водных растворов от токсичных соединений фторангидрида метилфторфосфоновой кислоты CH3POF2, цианидов и мышьяковистых соединений, и может быть использовано в фильтрах для очистки воды коллективного пользования и в полевых средствах водообеспечения. Предложен активированный углеродный волокнистый материал, представляющий собой высокопористое углеродное волокно на основе углеродной ткани типа БУСОФИТ Т-55, состоящее из тонких нитей диаметром от 5 до 15 мкм, образованных преимущественно атомами углерода, при этом активированный углеродный волокнистый материал содержит оксид меди в количестве 2,0-3,0% мас. и гидроксид железа в количестве 12,0-14,0% мас. Способ получения активированного углеродного волокнистого материала включает приготовление пропиточного раствора путем разбавления концентрированного раствора солей железа и меди дистиллированной водой, подогретой до 30-40°С из расчета 0,340 кг/дм3 хлорного железа и 0,06 кг/дм3 сульфата меди, загрузку активированного углеродного материала в аппарат для перемешивания, пропитку сорбционной ткани приготовленным раствором при его перемешивании в течение 10-15 мин в пропиточном растворе, подогретом до 55-70°С и взятом в количестве, равном 0,35 кг/дм3 к загруженной активной ткани, последующую обработку раствором гидроксида натрия с концентрацией 10% мас. для осаждения соединений железа и меди, выгрузку продукта на вылеживание на открытом воздухе в течение 1,5-2,0 ч, термическую обработку в печи со щелевидной ретортой при температуре 120°С в течение 40-70 мин, при этом предварительно углеродный волокнистый материал подвергают активации путем карбонизации в присутствии пара при температуре 900°С со скоростью протяжки 5-8 м/ч и расходом пара 12-14 л/ч с получением активированного углеродного материала со степенью активации 40-50%, который далее стирают в воде с использованием моечных машин барабанного типа в 3-5 приемов в течение 9-25 мин и высушивают при 120-150°С в течение 2-5 ч. Количество вводимых добавок обеспечивает равное время защитного действия от различных типов токсичных загрязнений воды, при этом сокращается количество операций и растворов при получении данного материала. Полученный материал имеет повышенную по сравнению с существующими гранулированными сорбентами адсорбционную активность по извлечению из воды фторангидрида метилфторфосфоновой кислоты, равную 1,6 мг/г, цианидов - 2,1 мг/г и мышьяковистых соединений - 2,3 мг/г. 2 н.п. ф-лы, 1 пр.

Изобретение относится к области экологии. Предложен сорбент, полученный на основе угля из косточкового сырья. Способ получения сорбента включает приготовление пропиточного раствора путём разбавления концентрированного раствора солей железа и меди дистиллированной водой, подогретой до 30-40°С, из расчета 0,340 кг/дм3 хлорного железа и 0,06 кг/дм3 сульфата меди. Активный уголь фракции 0,315-1,0 мм пропитывают приготовленным раствором, подогретым до 55-70°С, при перемешивании в течение 10-15 минут. Далее осуществляют обработку пропитанного угля раствором гидроксида натрия для осаждения соединений железа и меди. Продукт подвергают вылеживанию на открытом воздухе в течение 1,5-2,0 часов. Проводят термическую обработку продукта в печи кипящего слоя или во вращающейся печи при температуре 120-145°С в течение 40-70 минут, обеспечивая содержание влаги в сорбенте не более 3% мас. Технический результат: повышение сорбционной способности модифицированного угля по токсичным соединениям метилфторфосфоновой кислоты, цианидам и мышьяковистым соединениям. 2 н.п. ф-лы, 4 табл.

Изобретение относится к области ракетной техники, а именно к ракетным двигателям твердого топлива – РДТТ, и предназначено для использования в ракетах различного назначения. Технический результат – повышение эффективности работы РДТТ. Устройство содержит цилиндрический корпус, стартовую и маршевую камеры сгорания, диафрагму. По периферии диафрагмы равномерно расположены газоводы. Они снабжены мембранами со стороны стартовой камеры сгорания. Имеется также сопло и теплозащитное покрытие. Газоводы расположены под углом 5…15 градусов к оси двигателя, а их длина составляет (0,1…0,2)D. В передней части стартовой камеры на расстоянии не менее 10h толщина теплозащитного покрытия составляет 1,5…2,5 толщины теплозащитного покрытия в средней части стартовой камеры, при h=(D-d)/2, где h - высота выходного отверстия газоводов; D - внутренний диаметр стартовой камеры сгорания у диафрагмы; d - диаметр наружной описывающей окружности газоводов. 1 ил.

Изобретение относится к гидроакустике, а именно к устройствам регистрации акустических сигналов, и может быть использовано для обнаружения, определения местонахождения и классификации движущихся подводных объектов. Радиогидроакустический буй на микроконтроллерах содержит последовательно соединенные гидроакустическую антенну (гидрофон), предварительный усилитель, радиопередающий тракт и приемо-передающую радиоантенну, а также устройство самоликвидации. В его состав также включены измерительный блок на микроконтроллере, в котором реализуются функции управления и цифровой фильтрации, связанный по входу с выходом предварительного усилителя, и блок радиопередающих трактов (РПТ), включающий n РПТ, каждый из которых связан с измерительным блоком через последовательный интерфейс. В состав каждого РПТ включены последовательно соединенные микросхема памяти, микроконтроллер, реализующий функции управления и цифроаналогового преобразования, и радиопередатчик, осуществляющий передачу шумовых сигналов от цели на носитель. Технический результат заключается в повышении вероятности обнаружения цели, повышении скрытности использования буя и увеличении времени его работы. 3 ил.

Изобретение относится к области автоматического управления и может быть использовано при построении высоконадежных резервированных устройств и систем, содержащих измерители с числоимпульсным выходом (датчики угловой скорости, акселерометры и т.д.), где наряду с достижением высокой надежности требуется достижение высокой точности. Технический результат заключается в повышении точности измеряемого параметра, в качестве которого используется «средний» сигнал измерителя из группы n измерителей с числоимпульсным выходом. Для достижения этого результата заявляемое устройство содержит блок выбора среднего сигнала и n блоков масштабирования, каждый из которых содержит регистры задания цены положительного и отрицательного приращения, регистр задания сигнала компенсации, сумматор, цифровой компаратор и триггер, которые производят компенсацию различного значения цены выходного импульса каждого датчика и его начального смещения, что обеспечивает повышение точности. При выходе из строя измерителя устройство фиксирует отказ и продолжает работу без потери информации. 2 з.п. ф-лы, 4 ил.

Изобретение относится к электрическим машинам и может быть использовано при производстве индукторных синхронных генераторов. Технический результат - повышение надежности, долговечности и технологичности генераторов. Указанная цель достигается за счет снижения величины подшипниковых токов. Индукторный синхронный генератор состоит из корпуса, пакета статора, зубчатого пакета ротора, подшипниковых щитов, подшипников, лабиринтов, ответных частей лабиринтов, вала, шпоночного паза на валу. При этом в лабиринтах, поджимающих наружные обоймы подшипников, и в их ответных частях, закрепленных на валу, выполняются соответственно по три и более плоских ребер и выступов, одинаковых по форме и размерам. Ребра лабиринтов находятся с зазором в пространстве между выступами их ответных частей, а выступы последних между ребрами лабиринтов. 3 з.п. ф-лы, 5 ил.

Изобретение относится к ледотехнике и касается технологии разрушения ледяного покрова для вскрытия прохода через ледовое поле
Изобретение относится к области безопасной эксплуатации объектов по уничтожению химического оружия (ОУХО), а именно к созданию дегазирующих рецептур для нанесения на внешние и внутренние поверхности ОУХО и формирования на них самодегазирующего покрытия, обеспечивающего безопасную эксплуатацию объектов при многократном заражении физиологически-активными веществами (ФАВ)

Изобретение относится к технике автоматического управления, в частности, к технике формирования управляющих сигналов

Изобретение относится к области ракетной техники, а именно к реактивным снарядам

Изобретение относится к технике автоматического управления, в частности к технике формирования управляющих сигналов

Изобретение относится к области разделения гетерогенных сред с использованием центрифуг и может быть применено в горнодобывающей, угольной, химической и других отраслях промышленности, где необходимо разделение жидкой и твердой фазы, причем частицы твердой фазы имеют малые размеры

Изобретение относится к технике автоматического управления, в частности к технике формирования управляющих сигналов

Изобретение относится к области ракетной техники, а именно к реактивным снарядам систем залпового огня

Изобретение относится к области ракетной техники, а именно к реактивным снарядам систем залпового огня

 


Наверх