Патенты автора Надточенко Виктор Андреевич (RU)

Использование: для формирования плазмонных наноструктур на поверхностях объектов. Сущность изобретения заключается в том, что формирование плазмонных наноструктур на поверхностях объектов для неразрушающего анализа малых концентраций химических соединений в объектах методом Рамановской спектроскопии включает получение потока аэрозоля с наночастицами в потоке транспортного газа, нагрев аэрозоля с наночастицами в потоке транспортного газа с обеспечением получения наночастиц сферической формы требуемого размера из металлов, транспортировку полученного потока аэрозоля с наночастицами к головке с соплом, фокусировку соплом потока аэрозоля наночастиц, осаждение наночастиц из сфокусированного потока аэрозоля на поверхность анализируемого объекта, отличающийся тем, что используют неагломерированные сухие наночастицы, свободные от растворителей, связующих и иных примесей, полученные из плазмонно-активных металлов с модальными размерами, обеспечивающими локальное усиление электромагнитного поля зондирующего лазерного излучения Рамановского спектрометра, при этом осаждение наночастиц на поверхность анализируемого объекта производят с низкой скоростью для обеспечения достаточно слабого крепления наночастиц к поверхности объекта с возможностью их последующего удаления без повреждения объекта, например, сдуванием струей инертного газа, и обеспечивают неполное покрытие необходимого для проведения измерений микроразмерного участка поверхности объекта монослоем наночастиц для максимизации спектра поверхностно-усиленного комбинационного рассеяния. Технический результат: обеспечение возможности формирования плазмонных наноструктур на поверхностях объектов, позволяющих выполнять с высокой чувствительностью метод поверхностно-усиленного комбинационного рассеяния при одновременном обеспечении возможности последующего удаления плазмонных наноструктур с поверхности объекта без его повреждения, что делает данный метод анализа неразрушающим. 6 з.п. ф-лы, 5 ил.
Изобретение относится к области медицины. Предложен способ неинвазивной диагностики состояния и организации внутриклеточного хроматина в GV-ооците млекопитающих. Осуществляют захват оптическим микропинцетом ядрышкоподобного тельца в зародышевом пузырьке ооцита, находящегося в начальной стадии развития. Проводят смещение и деформацию ядрышкоподобного тельца внутри клетки. В случае смещения центра ядрышкоподобного тельца ооцит относят к NSN типу. В случае деформации тельца либо полном отсутствии эффекта ооцит относят к SN типу. Изобретение обеспечивает повышение быстродействия и точности определения состояния и организации внутриклеточного хроматина в GV-ооцитах млекопитающих. 1 пр.
Изобретение относится к области биотехнологии, а именно к способам слияния эмбриональных клеток. Описан способ получения химерной бластоцисты. Первоначально действием ультракороткого лазерного импульса выполняют слияние двух бластомеров эмбриона путем облучения участка естественного контакта, затем несколькими импульсами диодного лазера выполняют прокол размером 10-12 мкм блестящей оболочки эмбриона в области максимально удаленной от бластомеров, посредством действия ИК-лазера, в полученный прокол действием ИК-лазера помещают предварительно модифицированные эмбриональные стволовые клетки. Технический результат, получаемый при реализации разработанного способа за счет одновременного использования трех лазеров, обеспечивает возможность быстрого и технологичного введения стволовых клеток с модифицированным геномом в эмбрион мыши на различных стадиях развития и с разной плоидностью бластомеров в один этап, что обеспечивает получение сразу чистых линий с более высокой эффективностью, без потери времени и затрат на последующее скрещивание химер для выведения чистых линий. Изобретение может быть использовано для повышения эффективности реконструирования эмбрионов. 4 з.п. ф-лы.
Изобретение относится к области биотехнологии и может быть использовано для введения сферического диэлектрического микроконтейнера, несущего определенный генетический материал, такой как ДНК или РНК, в клетки млекопитающих. Создают оптическую ловушку для микроконтейнера с использованием сфокусированного лазерного излучения с длиной волны 830 нм. Осуществляют приведение микроконтейнера в соприкосновение с клеточной мембраной путем облучении его цугами импульсов лазерного излучения с длиной волны 780 нм с последующим разрезанием клеточной мембраны сфокусированными лазерными импульсами и контролируемым вводом с использованием оптической ловушки микроконтейнера в клетку. Изобретение позволяет доставить микроконтейнер, несущий генетический материал, в заданную координату клетки млекопитающего с высокой точностью. 3 з.п. ф-лы.
Изобретение относится к применению штамма цианобактерий Anabaena sp. РСС 7120 для получения наночастиц серебра. При биовосстановлении серебра с получением наночастиц проводят инкубирование при постоянном освещении штамма Anabaena sp. РСС 7120 в безазотистой среде с нитратом серебра. Изобретение обеспечивает получение раствора наночастиц серебра, в котором наночастицы существуют в свободном состоянии.

Группа изобретений относится к биотехнологии. Предложен фотобиокатализатор, включающий гидрогеназу, иммобилизованную в количестве не менее 0,1 нмоль на 1 см2 на наноструктурированной мезопористой пленке TiO2. Мезопористая плёнка приготовлена из нанокристаллов TiO2 размером от 15 до 25 нм с удельной поверхностью 50-100 м2/г. Совместно с ферментом гидрогеназой на пленке диоксида титана иммобилизован фотосенсибилизатор ФС 1 - пигмент-белковый комплекс фотосистемы 1 - в количестве 0,01-0,04 нмоль ФС 1 на 1 см2. Полученная пленка TiO2 имеет толщину 4-8 мкм, удельную поверхность 50-65 м2/г, поры со средним радиусом 11,5 нм и удельным объемом 0,50-0,65 см3/г. Также предложен фотокаталитический способ получения водорода в анаэробных условиях с использованием описанного фотобиокатализатора при освещении светом с λ=490-750 нм в присутствии органического донора электрона и переносчика электрона. Изобретения обеспечивают повышение устойчивости пигмент-белкового комплекса фотосистемы 1 и гидрогеназы, а также позволяют получать водород под действием видимого света с высокой скоростью. 2 н. и 1 з.п. ф-лы, 3 ил., 4 пр.

Изобретение относится к области фотоники и вычислительной техники и направлено на обеспечение возможности сверхбыстрого фотопереключения молекул ретинальсодержащих белков (РСБ) при комнатной температуре в субпикосекундной шкале времени, а также на создание оптического логического элемента, содержащего такой ретинальсодержащий белок, что обеспечивается за счет того, что способ фотопереключения ретинальсодержащего белка включает перевод белка при комнатной температуре из исходного состояния в промежуточное состояние путем воздействия на него первым световым импульсом с длиной волны, находящейся в диапазоне, соответствующем области поглощения исходного состояния, и последующее его возвращение в исходное состояние путем воздействия вторым световым импульсом с длиной волны, находящейся в диапазоне, соответствующем области, в которой происходит поглощение промежуточного состояния, но не происходит поглощение исходного состояния, при этом длительность указанных световых импульсов не превышает 50 фс, а промежуток времени между указанными световыми импульсами не превышает 6 пс

Изобретение относится к способам получения мезопористых наноструктурированных пленок диоксида титана (TiO2) и к способам иммобилизации на них ферментов с целью получения фотобиокатализаторов и может быть использовано в биотехнологии

 


Наверх