Патенты автора Пономарев Сергей Григорьевич (RU)

Изобретения относятся к области литейного производства и предназначены для облегчения проведения сравнительных испытаний на термопрочность формовочных или стержневых смесей в системе взаимодействия металл - литейная форма. Комплекс содержит нагревательное устройство, имеющее корпус, с установленным в него термодатчиком и нагревательным элементом, программируемое устройство, осуществляющее управление нагревательным устройством, образец, размещенный на двух опорах, внутри корпуса нагревательного устройства, при этом корпус нагревательного устройства размещается по центру образца, и датчик, фиксирующий время разрушения и температуру разрушения и передающий данные в программируемое устройство. Нагревательное устройство, датчик и программируемое устройство соединены с источником питания посредством электрической связи, а комплекс дополнительно снабжен грузиком, предназначенным для нагружения образца. На верхней и нижней поверхности образца по его поперечной оси симметрии выполнены две канавки П-образного сечения, в форме синусоиды, с глубиной в диапазоне от 2 мм до 5 мм и шириной в диапазоне от 2 мм до 5 мм. Сущность способа: осуществляют размещение образца на двух опорах в комплексе для определения термопрочности стержневых и формовочных смесей, нагрев образца в автоматическом цикле до температуры, которая должна быть не менее 300°С, фиксацию времени разрушения и температуры разрушения, определение показателя термопрочности по формуле, введение в программируемое устройство статистически определенных показателей термопрочности формовочных или стержневых смесей и их компонентного состава, заданных технологически, сравнение рассчитанного по формуле показателя термопрочности с показателями термопрочности, заданными технологически, и введенными в программируемое устройство, корректировку компонентного состава формовочных или стержневых смесей, из которых состоит образец. Технический результат: определение с высокой степенью точности показателя термопрочности и возможность реализации корректировки компонентного состава формовочных (стержневых) смесей. 2 н. и 17 з.п. ф-лы, 2 ил.

Изобретение относится к области литейного производства. Способ отверждения жидкостекольной смеси при изготовлении форм и стержней включает заполнение оснастки жидкостекольной смесью и продувку ее углекислым газом с образованием угольной кислоты и гидрокарбоната натрия. Перед продувкой углекислым газом на поверхность жидкостекольной смеси наносят соль, катионом которой является металл с положительным электродным потенциалом, а анионом – кислотный остаток, больший по силе, чем угольная кислота, при молекулярном соотношении жидкого стекла и соли 2:1. Нанесение упомянутой соли позволяет снизить содержание образующегося при продувке углекислым газом легкоплавкого гидрокарбоната натрия, который понижает прочностные характеристики жидкостекольной смеси. Обеспечивается стабильная прочность жидкостекольной смеси. 3 з.п. ф-лы, 2 ил., 2 табл., 1 пр.

Изобретение относится к литейному производству. Способ оценки извлекаемости стержневых и формовочных смесей заключается в изготовлении экспериментального образца смеси и его предварительном уплотнении в гильзе с нанесенным разделительным покрытием, которая затем помещается в установку, предназначенную для измерения показателя извлекаемости, содержащую в основании кольцо, обеспечивающее гарантированный зазор между образцом смеси и основанием установки, механический привод, приводящий в движение прижимной винт и передающий усилие поршню, соединенному с динамометром, фиксирующим числовое значение максимального усилия, прилагаемого на образец смеси до момента его непосредственного сдвига относительно гильзы в направлении зазора. Изобретение позволяет подобрать оптимальный состав формовочной и стержневой смеси для обеспечения необходимых технологических свойств форм и смесей, а также разделительных покрытий, что в свою очередь позволяет улучшить качество литейных форм и стержней, а следовательно, и отливок. 2 з.п. ф-лы, 1 ил.
Предлагается способ получения огнеупорных изделий из керамического материала на основе ниобата калия-натрия в виде различной технологической оснастки: реакционных сосудов, тиглей, оснований, реакторов и т.п., используемых при производстве технических керамик, преимущественно пьезоэлектрических, на основе титанатов калия-натрия-висмута (KNBT) или ниобатов калия-натрия (KNN), при котором при подготовке шихты исходные компоненты N2CO3 и K2CO3 используют в виде 1 мольных водных растворов, a Nb2O5 в виде порошка со средним размером зерна 10 мкм. При непрерывном перемешивании смешивают растворы карбонатов калия и натрия с навеской порошка оксида ниобия в мольном соотношении 1:1, упаривают полученную водную смесь карбонатов и оксида до состояния рассыпчатой смеси, которую далее дегидратируют в сушильном шкафу при температуре 210°С до постоянства массы и охлаждают до комнатной температуры в эксикаторе. Затем в подготовленную таким образом шихту вводят 10% временной технологической связки в виде 5% водного раствора поливинилового спирта путем смешивания их в смесителе принудительного действия и выдержки в закрытой емкости в течение технологического времени до обеспечения равномерности распределения раствора поливинилового спирта и стабилизации влажности по объему с получением гомогенной формовочной массы, которую затем гранулируют до размеров, способствующих повышению текучести и укладываемости. Формование заготовок ведут методом двухстороннего одноосного прессования при давлении 100 МПа, обеспечивая идентичность последних по геометрическим параметрам готовым изделиям, при этом стадию синтеза материала ниобата калия-натрия совмещают со стадией спекания изделия, осуществляя их одновременно за один технологический переход. В результате достигается сокращение технологического процесса за счет упрощения подготовки шихты и совмещения проводимых операций. 2 з.п. ф-лы.

Изобретение относится к области технологии получения керамики для изготовления диэлектриков конденсаторов, в т.ч. многослойных. Согласно предлагаемому способу шихту готовят из смеси двух порошков титаната бария BaTiO3 различной дисперсности, взятых в массовом соотношении (85,0-95,0):(15,0-5,0), причем первый составляющий основу шихты микрометрический порошок берут со средним размером частиц 1,8 мкм, а второй - нанометрический - со средним размером частиц 80 нм, обеспечивая их совместный помол в течение времени, необходимого для достижения оптимальной равномерности распределения в объеме основного компонента частиц дополнительного компонента. Микронный порошок получен методом твердофазного синтеза из эквимолярной смеси карбоната бария и диоксида титана, а нанометрический, обладающий узким распределением частиц по размерам в нано-области и близкой к сферической формой частиц, методом синтеза из эквимолярной смеси оксида бария и диоксида титана в среде сверхкритического водного флюида. Формование шихты ведут полусухим одноосным прессованием при давлении 40-100 МПа в присутствии временного технологического связующего в виде парафина, удаляемого до проведения обжига, проводимого в диапазоне температур 1250-1350°С в установленном режиме нагрева/охлаждения и изотермической выдержки. В результате получают наиболее плотную упаковку частиц шихты при формовании и повышенную активность шихты к спеканию, способствующие уплотнению структуры продукта, что позволяет за счет снижения массовой доли используемого дорогостоящего наноразмерного порошка, упрощения технологических процессов и их аппаратной составляющей уменьшить экономические затраты на производство керамики BaTiO3 и повысить качественные характеристики получаемого продукта. 4 з.п. ф-лы, 1 табл., 6 пр.
Изобретение относится к составу шихты, предназначенной для получения пьезоэлектрических керамических материалов (ПЭКМ) различного назначения на основе ниобатов калия-натрия. Первоначально путем смешивания водных растворов карбонатов K2CO3 и Na2CO3, упаривания и дегидрирования смеси синтезируют сложный карбонат KNaCO3. В водный раствор указанного карбоната при непрерывном перемешивании вводят порошок оксида ниобия Nb2O5 и при необходимости добавляют исходные компоненты легирующих добавок: водорастворимые - в виде раствора, нерастворимые - в виде тонкодисперсного порошка. Эту смесь упаривают и дегидрируют в течение часа в сушильном шкафу при температуре 210°С, получая шихту с высокой степенью гомогенности. Соотношение исходных компонентов определяется заданной химической композицией ПЭКМ. Достигаемое в предлагаемом способе равномерное распределение реагентов шихты, когда частицы Nb2O5 окружены достаточным количеством карбоната KNaCO3 с повышением их дисперсного состояния, обеспечивает повышение реакционной способности реагентов и, соответственно, скорости реакции синтеза. Это позволяет вести процесс при сокращенных по времени циклах и без необходимости активации и помола шихты путем активного контактно-механического воздействия на ее компоненты. В результате упрощается технологическая схема процесса и его аппаратная составляющая. 1 з.п. ф-лы, 3 пр.

Изобретение относится к производству корундовых огнеупорных изделий методом вибролитья и может быть использовано при производстве крупногабаритных изделий сложной конфигурации. Технический результат - повышение термостойкости и химической стойкости изделий. Технический результат достигается тем, что шихта для изготовления корундовых огнеупорных изделий содержит фракционированный электрокорунд, глинозем реактивный тонкодисперсный (ГРТ), нанодисперсное технологическое связующее: бемит 98% с примесью кальцита 2%, глинозем Alphabond-500, пластификатор Castament FS-40 и воду при следующем содержании компонентов в масс. %: электрокорунд 65-73, ГРТ 20-30, нанодисперсное технологическое связующее 2-6, Alphabond-500 1-4, Castament FS-40 0,1-0,3, вода 6-10 (сверх массы). 1 табл., 2 пр.

Изобретение относится к области металлургии и может быть использовано для создания рафинирующих и модифицирующих смесей для производства ответственных изделий из чугуна и стали. Смесь содержит, мас.%: минералы кальций-барий-стронциевого карбоната и титаносодержащий материал соответственно 70-95 и 5-30. Изобретение позволяет создать эффективный материал комплексного воздействия на структуру и фазовые составляющие металла, который обеспечивает высокое качество металлических отливок ответственного назначения, в частности для вагоностроения. 6 з.п. ф-лы, 4 пр., 5 табл.

Изобретение относится к области металлургии, в частности к составам смесей для легирования и модифицирования сталей, используемых для производства литых изделий высокой эксплуатационной надежности для работы техники, железнодорожных вагонов в сложных низкотемпературных климатических условиях. В составе модифицирующей смеси используют азотированный титаносодержащий сплав и нитрид силикокальция, полученных самораспространяющимся высокотемпературным синтезом (СВС), при следующем содержании компонентов, мас.%: азотированный титансодержащий сплав 30-95, нитрид силикокальция 5-70, при этом смесь содержит химические элементы в количественном соотношении, мас.%: титан 18-65, кремний 2-32, кальций 1-18, алюминий 3-10, азот 7-20, железо - остальное. В качестве титансодержащего сплава используют ферротитан или отходы титанового производства в виде шлака огневого реза титана и его сплавов. Изобретение позволяет повысить надежность литых несущих деталей при низкотемпературных условиях эксплуатации и живучесть модифицирующей смеси в ковшах большой емкости, а также улучшить литейно-механические свойства стали, т.е. понизить пористость, повысить трещиноустойчивость и дисперсность дендритной литой структуры. 2 з.п. ф-лы, 2 табл.

Изобретение относится к мостостроению и может быть использовано при проектировании и строительстве опор мостов на фундаментах любой конструкции
Изобретение относится к литейному производству, в частности к суспензиям для изготовления оболочковых форм в литье по выплавляемым моделям

Изобретение относится к железнодорожному транспорту и касается конструкции хребтовых балок рам грузовых вагонов

 


Наверх