Патенты автора Хацевич Татьяна Николаевна (RU)

Изобретение может быть использовано в качестве фотографического объектива. Особоширокоугольный объектив содержит два компонента, между которыми установлена апертурная диафрагма. Первый компонент состоит из отрицательного мениска, обращенного выпуклой стороной к плоскости предметов, вторая поверхность которого выполнена асферической, плоско-вогнутой линзы, вогнуто-плоской линзы, двояковыпуклой линзы и положительного мениска, обращенного выпуклой стороной к плоскости предметов, второй компонент состоит из двух склеенных линз, при этом первая из них склеена из двояковогнутой и двояковыпуклой линз, вторая – из двояковыпуклой линзы и отрицательного мениска, и положительного мениска, обращенного выпуклой стороной к плоскости предметов. Выполняются следующие соотношения: где f ', f '1 – фокусное расстояние соответственно объектива и его первого компонента; L – длина вдоль оптической оси между первой и последней преломляющими поверхностями объектива; L2 – длина вдоль оптической оси между первой и последней преломляющими поверхностями второго компонента объектива. Технический результат – расширение поля зрения в пространстве предметов до 190°, повышение качества изображения. 2 ил., 1 табл.

Объектив для SWIR диапазона спектра может быть использован в оптико-электронных приборах на основе матричных фотоприемных устройств, чувствительных в спектральном диапазоне от 0,9 до 1,7 мкм. Объектив содержит три компонента и апертурную диафрагму, совмещенную с оправой первого компонента. Первый положительный компонент содержит склеенные двояковыпуклую и двояковогнутую линзы. Второй положительный компонент содержит отрицательную линзу, склеенную из двояковыпуклой и двояковогнутой линз, и положительного мениска, обращенного вогнутой поверхностью к плоскости изображений. Третий компонент содержит отрицательный мениск, обращенный вогнутой поверхностью к плоскости изображений, и положительную линзу, имеющую возможность перемещения вдоль оптической оси. Разность температурных коэффициентов линейного расширения материалов склеенных линз не превышает по модулю значение 3⋅10-6 1/градус. Между оптическими силами компонентов и всего объектива выполняются соотношения. Технический результат - повышение относительного отверстия, уменьшение поперечных габаритных размеров, увеличение температурного интервала работы. 1 з.п. ф-лы, 6 ил., 3 табл.

Оптический прицел может быть использован в охотничьих и спортивных оптических прицелах постоянного увеличения с увеличенным полем зрения. Оптический прицел состоит из двухкомпонентного объектива, оборачивающей системы, состоящий из двух положительных компонентов, двухкомпонентного окуляра, плоскопараллельной пластинки с прицельной маркой и шкалами, перемещаемой перпендикулярно оптической оси и размещенной в плоскости действительного изображения оборачивающей системы, полевой диафрагмы, Между фокусными расстояниями объектива, окуляра, первого и второго компонентов объектива и оборачивающей системы, первого компонента окуляра, удалением выходного зрачка прицела от последней поверхности окуляра выполняются соотношения, приведенные в формуле изобретения. Технический результат - увеличение поля зрения при сохранении видимого увеличения и уменьшения длины. 2 н. и 6 з.п. ф-лы, 2 ил., 6 табл.

Оптическая система прицела состоит из расположенных по ходу лучей объектива, плоскопараллельной пластинки с прицельной маркой и шкалами, оборачивающей системы, полевой диафрагмы и окуляра. Объектив выполнен трехкомпонентым. Оборачивающая система содержит два двухлинзовых скленных компонента, дифференцированно перемещающихся вдоль оптической оси оборачивающей системы, и отрицательную линзу. Плоскопараллельная пластинка прицельной маркой и шкалами и оборачивающая система выполнены совместно качающимися вокруг точки, совмещенной с осевой точкой плоскости второго действительного изображения. В первом варианте окуляр состоит из расположенных по ходу лучей двухлинзового склеенного компонента, положительного мениска, обращенного вогнутой поверхностью к полевой диафрагме, и двояковыпуклой линзы. Во втором варианте окуляр выполнен из одиночной положительной линзы и двухлинзовой склейки. Между параметрами устройства выполняются заявленные в формуле изобретения соотношения. Технический результат - упрощение конструкции оптической системы прицела, повышение технологичности его изготовления, повышение коэффициента пропускания. 2 ил., 4 табл., 2 н. и 21 з.п. ф-лы.

Изобретение относится к области оптического приборостроения, а именно к оптическим прицелам, и может быть использовано, например, в стрелковых, охотничьих, спортивных оптических прицелах, обеспечивающих возможность наблюдения объектов со сменным увеличением и соответственно со сменным полем зрения. Оптический прицел с дискретной сменой увеличения состоит из объектива, сетки, перемещаемой перпендикулярно оптической оси для изменения направления визирной оси прицела, оборачивающей системы и окуляра, при этом оборачивающая система выполнена из четырех компонентов, первый и третий из которых выводятся из хода лучей при смене увеличения, при этом φ1=(1,4÷1,8)φ2; φ3=-(2÷2,6)φ2; φ4=(0,6÷0,9)φ2; ; , где φ1, φ2, φ3, φ4 - оптические силы первого, второго, третьего и четвертого компонентов оборачивающей системы; - фокусное расстояние объектива; - относительное отверстие объектива; - удаление выходного зрачка прицела от последней поверхности окуляра; lобор - длина оборачивающей системы (расстояние вдоль оптической оси между плоскостями предметов и изображений в оборачивающей системе); L - длина оптической системы прицела (расстояние вдоль оптической оси между первой по ходу лучей преломляющей поверхностью объектива и последней преломляющей поверхностью окуляра); Δn/ΔT - величина температурного изменения показателя преломления материалов линз оптической системы. Техническими результатами изобретения являются реализация дискретной смены увеличения с перепадом не менее 4 крат, уменьшение длины оптической системы, обеспечение одинаковой величины удаления выходного зрачка для каждого из увеличений, повышение сумеречного числа, обеспечение термостабильности оптической системы с одновременным сохранением внутренней выверки и высокого качества изображения в пределах всего поля для каждого из увеличений. 8 з.п. ф-лы, 3 табл., 2 ил.

Объектив может быть использован в тепловизорах в спектральном диапазоне 8-12 мкм. Объектив по обоим вариантам содержит четыре компонента, второй и четвертый из которых подвижные и имеют по два фиксированных положения. Первый компонент выполнен в виде положительного мениска, обращенного вогнутой поверхностью к плоскости изображений, третий компонент - в виде положительного мениска, обращенного выпуклой поверхностью к плоскости изображений, четвертый компонент - положительный и выполнен в виде двух менисков, обращенных выпуклыми поверхностями друг к другу. В первом варианте второй компонент включает двояковогнутую линзу и отрицательный мениск, обращенный к ней выпуклой поверхностью. Во втором варианте второй компонент выполнен в виде двух отрицательных менисков, обращенных друг к другу своими вогнутыми поверхностями. При этом выполняются соотношения, указанные в формуле изобретения. Технический результат - увеличение углового поля, повышение относительного отверстия в режиме узкого поля зрения, обеспечение квазиравных значений относительных отверстий при смене поля зрения, уменьшение относительной длины объектива при обеспечении высокого качества изображения. 2 н. и 3 з.п. ф-лы, 12 ил., 2 табл.

Дальномер имеет частично совмещенные визирный, излучающий, приемный и проекционный каналы. Объективы всех каналов выполнены двухкомпонентными, первый компонент объектива визирного канала входит в состав объектива приемного и излучающего каналов. В дальномер входят первый компонент объектива визирного канала, призменная оборачивающая система с двумя дополнительными прямоугольными призмами и светоделительными покрытиями, второй компонент объектива визирного канала, сетка, окуляр, лазер, линзовый компонент излучающего канала, второй компонент объектива приемного канала, фотоприемное устройство, микродисплей, первый компонент проекционного канала, измеритель временных интервалов, вычислитель дальности, баллистический вычислитель, датчики температуры, давления, углов места цели, модули спутниковой навигации в системах NAVSTAR GPS и СНС ГЛОНАСС, внешний дисплей, компас и внешний разъем. Технический результат - повышение видимого увеличения визирного канала, уменьшение габаритных размеров и массы прибора, а также повышение удобства и скорости измерений, расширение функциональных возможностей. 8 з.п. ф-лы, 5 ил., 1 табл.

Объектив может быть использован в пассивных и активно-импульсных ПНВ совместно с ЭОП 2, 2+ и 3-го поколений. Объектив содержит первый положительный мениск, обращенный вогнутой поверхностью в сторону второго компонента, второй отрицательный компонент, склеенный из двояковыпуклой и двояковогнутой линз, четвертую двояковыпуклую линзу, третий и пятый отрицательные мениски, обращенные вогнутыми поверхностями в сторону четвертой линзы. Расстояние между первой линзой и вторым компонентом - не менее 0,3 фокусного расстояния объектива. Все линзы выполнены из стекол с коэффициентами линейного расширения в диапазоне (5÷10)·10-6 градус-1. Средняя для рабочего диапазона температур ΔT величина температурного изменения показателя преломления стекол первой линзы и двояковыпуклой линзы второго компонента находится в диапазоне (-2÷0)·10-6 градус-1, остальных линз - в диапазоне (0÷4)·10-6 градус-1. Между относительными оптическими силами выполняются указанные в формуле изобретения соотношения. Технический результат - повышение относительного отверстия и углового поля, уменьшение массы при сохранении величины диаметра входного зрачка, обеспечение термонерастраиваемости и высокого качества изображения в диапазоне температур эксплуатации от -50 до +50°C без введения дополнительных подвижек объектива, его компонентов или ЭОП. 5 ил., 4 табл.

Объектив может использоваться в тепловизионных приборах с матричными приемниками, регистрирующими изображение в фиксированной плоскости. Объектив содержит четыре компонента. Первый и четвертый - в виде положительных менисков из одинакового материала, обращенных вогнутостями к плоскости изображений. Относительная оптическая сила первого компонента - от 0,6 до 0,8. Второй компонент - в виде двояковогнутой линзы. Третий компонент - в виде двух положительных менисков, обращенных вогнутыми поверхностями к плоскости изображений. Второй компонент и второй мениск третьего компонента выполнены из материалов, отличных от материала первого и четвертого компонентов, и имеют в спектральных диапазонах 3-5 и 8-12 мкм коэффициенты средней дисперсии, отличающиеся более чем в 5 раз, при квазиравных величинах коэффициентов частных дисперсий. Относительные оптические силы компонентов в объективе в соответствии с их расположением по ходу лучей составляют соответственно: (0,6÷0,8); -(0,5÷0,6); (0,6÷0,7); -(0,2÷0,3); (0,9÷1,0). Технический результат - возможность регистрации теплового изображения в диапазонах 3-5 мкм и 8-12 мкм при неизменном положении плоскости изображения и уменьшение диаметров компонентов. 1 з.п. ф-лы, 6 ил., 1 табл.

Прицел содержит объектив, коллектив, плоскопараллельную пластинку с прицельной маркой и шкалами, оборачивающую систему, полевую диафрагму и окуляр. В объективе корригируют аберрации в пределах углового поля, равного сумме наибольшей величины углового поля прицела и наибольшей величины изменения направления визирной оси. Плоскопараллельную пластинку устанавливают в плоскости первого или во втором варианте второго промежуточного изображения. Компоненты оборачивающей системы и в первом варианте плоскопараллельную пластинку дифференцировано перемещают так, чтобы обеспечить смещения главных точек компонентов оборачивающей системы и в первом варианте вершины прицельного знака в направлении, перпендикулярном оптической оси. Величины смещений пропорциональны расстояниям от осевой точки второй плоскости действительного изображения до соответствующих перемещаемых компонентов. Технический результат - увеличение перепада увеличений до 5 раз, повышение увеличения до 25 крат, обеспечение удаления выходного зрачка не менее 90 мм и изменения направления визирной оси на угол, превышающий величину углового поля прицела при наибольшем увеличении при сохранении качественного изображения. 3 н. и 7 з.п. ф-лы, 6 ил., 2 табл.

Объектив может быть использован для визуального наблюдения, фото и видео регистрации. Объектив содержит расположенные по ходу лучей четыре компонента: главное зеркало, вторичное зеркало с внутренним отражением, расположенный вблизи плоскости промежуточного изображения третий компонент и оборачивающую систему, состоящую из двух линз, одна из которых - отрицательный мениск, обращенный вогнутой стороной ко второй двояковыпуклой линзе. Все преломляющие и отражающие поверхности выполнены сферическими. Третий компонент выполнен в виде двух близко расположенных положительной и отрицательной линз. Показатели преломления и коэффициенты основной средней дисперсии материалов линз, расположенных по ходу лучей, могут удовлетворять соотношению: 1,61<n1<1,67; 1,61<n2<1,67; 1,78<n3<1,91; 1,57<n4<1,65; 1,70<n5<1,81; 54<ν1<61; 55<ν2<64; 22<ν3<41; 33<ν4<55; 40<ν5<54. Положительная линза третьего компонента может быть выполнена двояковыпуклой или в виде мениска, обращенного вогнутой стороной к плоскости промежуточного изображения, а отрицательная линза - в виде мениска, обращенного вогнутой стороной к плоскости промежуточного изображения. Технический результат - расширение рабочего спектрального диапазона, повышение относительного отверстия и увеличение углового поля при сохранении высокого качества изображения. 3 з.п. ф-лы, 3 ил.

Окуляр может быть использован в оптических и оптико-электронных приборах, требующих удаления выходного зрачка, превышающего фокусное расстояние не менее чем в 2,5 раза. Окуляр содержит расположенные по ходу лучей отрицательный дублет, положительный мениск, обращенный вогнутой поверхностью к предметной плоскости, положительный дублет, ориентированный своей отрицательной линзой в сторону предметной плоскости, положительную линзу в виде мениска, обращенного вогнутой поверхностью к выходному зрачку. Отношение величин внутреннего и внешнего радиусов отрицательной линзы положительного дублета, умноженное на абсолютную величину разности коэффициентов основной средней дисперсии материалов линз положительного дублета, находится в диапазоне от 6 до 12, фокусное расстояние положительной линзы - в диапазоне от 0,9 до 1,2 от величины удаления выходного зрачка. Отрицательные и положительные линзы дублетов выполнены из одинаковых материалов. Между параметрами оптической системы окуляра выполняются соотношения, указанные в формуле изобретения. Технический результат -уменьшение габаритных размеров и массы, повышение качества изображения за счет уменьшения хроматизма увеличения и астигматизма в изображении без уменьшения величин углового поля и относительного отверстия окуляра, а также обеспечение хода главных лучей в пространстве предметов, близкого к телецентрическому. 1 табл., 3 ил.

Изобретение относится к области оптического приборостроения, а именно к объективам для инфракрасной (ИК) области спектра, и может быть использовано в тепловизорах, построенных на основе матричных фотоприемных устройств (МФПУ), не требующих охлаждения до криогенных температур, чувствительных в спектральном диапазоне от 8 до 12 мкм

Изобретение относится к области оптического приборостроения, а именно к объективам для инфракрасной (ИК) области спектра, и может быть использовано в технологических установках по проверке параметров матричных приемников теплового излучения, применяемых в тепловизорах

Изобретение относится к технике обнаружения объектов, а именно к оптико-электронным системам видения удаленных объектов с использованием лазерной подсветки в инфракрасном спектральном диапазоне, и может быть использовано для разработки и создания тепловизионных систем и приборов, предназначенных для обнаружения и распознавания целей на больших расстояниях

Изобретение относится к области оптического приборостроения, а именно к оптико-электронным приборам, и может быть использовано, например, в тепловизионных приборах и системах, построенных на основе матричных приемников теплового излучения и обеспечивающих анализ изображений объектов в различных полях зрения

Изобретение относится к области оптического приборостроения и может быть использовано, например, в тепловизионных приборах и системах, построенных на основе матричных фотоприемников теплового излучения (МФПУ)

Изобретение относится к области оптического приборостроения и может быть использовано в качестве апохроматического объектива в астрономических телескопах для визуального наблюдения, фото- и видеорегистрации

Изобретение относится к области оптико-электронного приборостроения, а именно к тепловизионным приборам, и может быть использовано для создания тепловизионных приборов с различными техническими характеристиками с использованием приемников инфракрасного (ИК) излучения различных классов (матричных, линейчатых)

Изобретение относится к области оптического приборостроения, а именно к активно-импульсным (АИ) оптико-электронным приборам (ОЭП) с регистрацией изображений на базе импульсных ЭОП или телевизионных камер, и может быть использовано в них в качестве осветителя, использующего полупроводниковый лазер с большим углом расходимости излучения, обеспечивающего импульсную подсветку объектов, в том числе на выносных наблюдательных пунктах

Изобретение относится к области оптического приборостроения, а именно к объективам для средней инфракрасной (ИК) области спектра, и может быть использовано в оптических системах тепловизоров, построенных на основе охлаждаемых матричных приемников теплового излучения, чувствительных в спектральном диапазоне от 3 до 5 мкм

Изобретение относится к области оптического приборостроения, а именно к объективам для инфракрасной (ИК) области спектра, и может быть использовано в оптических системах тепловизоров, построенных на основе охлаждаемых матричных приемников теплового излучения, чувствительных в пределах спектральных диапазонов от 3 до 5 мкм и от 8 до 12 мкм

Изобретение относится к области оптического приборостроения, а именно к инфракрасным (ИК) телескопическим (афокальным) системам со сменой увеличения и может быть использовано в оптических системах тепловизоров

Изобретение относится к области оптического приборостроения, а именно к инфракрасным (ИК) телескопическим (афокальным) системам со сменой увеличения для дальней ИК области спектра, и может быть использовано в оптических системах тепловизоров, в том числе содержащих сканирующие элементы, устанавливаемые в выходном зрачке телескопической системы

Изобретение относится к области оптического приборостроения, а именно к объективам для инфракрасной (ИК) области спектра, и может быть использовано в оптических системах тепловизоров, построенных на основе охлаждаемых матричных приемников теплового излучения

Изобретение относится к области оптического приборостроения и может быть использовано в оптических системах тепловизионных приборов в качестве афокальной системы, используемой для увеличения эквивалентного фокусного расстояния оптической системы, организации смены увеличения и установки сканирующего элемента в выходном зрачке телескопа

Изобретение относится к области оптического приборостроения и может быть использовано в оптических системах тепловизионных приборов

Изобретение относится к области оптического приборостроения, а именно к оптическим системам приборов ночного видения (ПНВ), и может быть использовано в качестве объектива переноса изображения с экрана электронно-оптического преобразователя (ЭОП) на ПЗС-матрицу

Изобретение относится к области оптического приборостроения, а именно к объективам, работающим в инфракрасной (ИК) области спектра, и может быть использовано в оптических системах тепловизоров, использующих для регистрации теплового изображения матричные приемники излучения, например микроболометры

Изобретение относится к области оптического приборостроения, а именно к объективам для инфракрасной (ИК) области спектра, и может быть использовано в оптических системах тепловизоров, например, таких, во входном зрачке которых установлены сканирующие элементы, а в выходном - охлаждаемая диафрагма фотоприемного устройства (ФПУ)

Изобретение относится к области оптического приборостроения и может быть использовано в оптических системах приборов ночного видения (ПНВ) в качестве системы переноса изображения с экрана электронно-оптического преобразователя (ЭОП) на ПЗС-матрицу

Изобретение относится к области измерительной техники и может быть использовано для решения задач сейсморазведки, промышленного контроля и охраны периметра территорий

Изобретение относится к области оптического приборостроения, а именно к инфракрасным (ИК) телескопическим (афокальным) системам со сменой увеличения для дальней ИК-области спектра, и может быть использовано в оптических системах тепловизоров, в том числе содержащих сканирующие элементы, устанавливаемые в выходном зрачке телескопической системы

Изобретение относится к области оптического приборостроения, а именно к объективам, предназначенным для дальней инфракрасной (ИК) области спектра, обеспечивающим дискретное изменение фокусного расстояния, и может быть использовано в оптических системах тепловизоров, в том числе тепловизоров смотрящего типа, использующих матричные приемники инфракрасного диапазона

Изобретение относится к объективам несканирующих тепловизионных приборов с неохлаждаемыми матричными приемниками

Изобретение относится к области оптического приборостроения, а именно к телескопическим (афокальным) системам с панкратической сменой увеличения для дальней инфракрасной (ИК) области спектра, и может быть использовано в оптических системах тепловизоров, в том числе содержащих сканирующие элементы, устанавливаемые в выходном зрачке телескопической системы

Изобретение относится к области оптико-электронного приборостроения и может быть использовано в качестве объектива тепловизионных приборов для наблюдения и опознавания объектов по тепловому излучению

Изобретение относится к области оптического приборостроения, а именно к объективам многоканальных систем, и может быть использовано для работы в двухканальных приборах ночного видения (ПНВ), имеющих один канал для работы совместно с приемниками излучения видимого диапазона (электронно-оптическими преобразователями (ЭОП) или низкоуровневыми телевизионными камерами (НТК)), а второй - с матричными инфракрасными (ИК) фотоприемными устройствами (ФПУ), для решения задач обнаружения и опознавания объектов в сложных условиях наблюдения и при пониженной освещенности

 


Наверх