Двухканальный коаксиальный зеркально-линзовый объектив

Зеркально-линзовый объектив содержит зеркально-линзовый канал видимого диапазона и линзовый ТП канал, расположенный в зоне центрального экранирования зеркально-линзового канала, имеющие общую визирную ось. Зеркально-линзовый канал содержит четыре компонента, первый из которых - защитная плоскопараллельная пластинка с вырезанной центральной зоной, второй компонент содержит выпукло-плоскую линзу и склеенный блок из мениска, обращенного выпуклой поверхностью к плоскости изображений, и двояковогнутой линзы. На последней поверхности второго компонента нанесено кольцевое отражающее покрытие. Третий компонент - мениск, обращенный вогнутой поверхностью к пространству предметов, с отражающим покрытием на второй поверхности и вырезанной центральной зоной. Четвертый компонент состоит из трех одиночных линз, первая из которых мениск, вторая и третья - двояковыпуклые. Линзовый ТП канал содержит три мениска, первый и третий из которых обращены к плоскости изображений вогнутыми поверхностями, а второй - выпуклой. Обеспечивается повышение углового поля линзового ТП канала, повышение эффективного относительного отверстия зеркально-линзового канала видимого диапазона при сохранении высокого качества изображения в каждом канале. 4 ил., 5 табл.

 

Изобретение относится к области оптического приборостроения, а именно к объективам многоканальных систем, и может быть использовано для работы в двухканальных приборах ночного видения (ПНВ), имеющих один канал для работы совместно с приемниками излучения видимого диапазона (электронно-оптическими преобразователями (ЭОП) или низкоуровневыми телевизионными камерами (НТК)), а второй - с матричными инфракрасными (ИК) фотоприемными устройствами (ФПУ), для решения задач обнаружения и опознавания объектов в сложных условиях наблюдения и при пониженной освещенности. Предлагаемый двухканальный объектив может быть использован как в пассивных, так и в активно-импульсных двухканальных ПНВ.

Известна двухканальная система [РФ 94013373. Совмещенный объектив // Ларкин Е.В., Арбузова И.В., Данилкин Ф.А. - 1995. - Бюл. №35], в которой центральная часть зрачка используется для прохождения излучения видимого диапазона, а кольцевая часть зрачка - для прохождения ИК излучения. Однако конструкция этого устройства в силу того, что каждый из каналов содержит всего по две линзы, принципиально не может обеспечить высокие относительное отверстие и разрешающую способность каналов. Кроме того, оно не формирует изображение на конечном расстоянии, а является, по сути, афокальной системой, после которой для получения изображений в видимых и инфракрасных лучах в каждом канале необходимо располагать два дополнительных объектива.

Известны двух- (и более) канальные объективы, обеспечивающие формирование изображения объекта по нескольким каналам, имеющим общую визирную ось, в том числе: канал ПНВ с приемником излучения видимого диапазона (например, ЭОП) и тепловизионный (ТП) канал [Гейхман И.Л., Волков В.Г. Основы улучшения видимости в сложных условиях. - М.: ООО Недра-Бизнесцентр. 1999, с.262-280]. Объективы различаются по своим конструктивным схемам, оптическим характеристикам, массогабаритным параметрам. Основным недостатком этих объективов является низкая разрешающая способность и большие массогабаритные характеристики. Лучший по качеству из упомянутых выше многоканальных объективов [2, с.267, таблица 19, рис.128, с.265] содержит в канале ПНВ с ЭОП 10 компонентов, имеет фокусное расстояние 225 мм, угловое поле 5° относительное отверстие 1:2, обеспечивает в спектральном диапазоне 0,7÷0,9 мкм коэффициент передачи контраста для пространственных частот 15 и 30 мм-1 соответственно 0,823 и 0,686 (для точки на оси) и 0,638 и 0,411 (для края поля зрения), при этом его габаритные размеры 150×321×284 мм. Объективы ТП каналов состоят из 3-5 линз, фокусные расстояния 130 (габаритные размеры 150×388×280 мм) и 292 мм, относительные отверстия до 1:1,8 и 1:2; информация о качестве изображения ТП канала не приводится.

Наиболее близким по технической сущности, принятым за прототип, является двухканальный зеркально-линзовый объектив, содержащий зеркально-линзовый канал видимого диапазона и линзовый ТП канал, расположенный в зоне центрального экранирования зеркально-линзового канала видимого диапазона, имеющие общую визирную ось, при этом зеркально-линзовый канал выполнен в виде четырех компонентов, первый из которых по ходу лучей имеет форму защитной плоскопараллельной пластинки с вырезанной центральной зоной, в состав второго компонента входит выпукло-плоская линза, на последней поверхности второго компонента нанесено кольцевое отражающее покрытие, третий компонент выполнен в виде мениска, обращенного вогнутыми поверхностями к пространству предметов, имеющего внутреннее отражающее покрытие на второй поверхности и вырезанную центральную зону, четвертый компонент состоит из трех одиночных линз, первая из которых по ходу лучей имеет форму мениска, при этом первый и третий компоненты зеркально-линзового канала выполнены из стекла одной марки с показателем преломления не более 1,52, а линзовый ТП канал выполнен в виде трех одиночных линз в форме менисков, разнесенных вдоль оптической оси на значительное расстояние, первый и третий из которых к плоскости изображений обращены своими вогнутыми поверхностями, а второй - выпуклыми, один из компонентов линзового ТП канала установлен в отверстии первого компонента зеркально-линзового канала видимого диапазона [РФ №2256205. Двухканальный зеркально-линзовый объектив (варианты) // Косолапов Г.И., Журавлев П.В., Хацевич Т.Н. - 2005. - Бюл. №19, второй вариант], при этом имеют место следующие соотношения

где f'зл, f'2зл, f'3зл - фокусные расстояния зеркально-линзового канала и его второго и третьего компонентов соответственно;

LЛ - длина вдоль оптической оси от первой поверхности до плоскости изображений линзового ТП канала;

f'л - фокусное расстояние линзового ТП канала.

В примере конкретного исполнения зеркально-линзовый канал имеет фокусное расстояние f'зл=119 мм, геометрическое относительное отверстие 1:1,2; эффективное относительное отверстие 1:1,7; угловое поле в пространстве предметов 2ω=8°; линейный размер приемника излучения видимого диапазона 18 мм. При этом фокусные расстояния его компонентов соответственно равны: f'2зл=4,1f'зл; |f'3зл|=1,75 f'зл. Зеркально-линзовый канал обеспечивает для точки на оси для пространственных частот 30 и 50 мм-1 коэффициенты передачи контраста соответственно 0,85 и 0,74, а для точек на краю поля зрения - соответственно 0,69 и 0,43.

В примере конкретного исполнения (второй вариант) линзовый ТП канал имеет фокусное расстояние f'=100 мм; относительное отверстие D:f'=1:1,8; размер чувствительной площадки ИК приемника 2y'=9,6 мм, угловое поле в пространстве предметов 2ω=5°30'. Канал рассчитан для работы в спектральном интервале 8-12 мкм. Длина линзового ТП канала составляет 1,66 от его фокусного расстояния (Lл=1,66f'л). Для единой компоновки каналов оптическая ось линзового ТП канала претерпевает излом с помощью поворотных зеркал. Качество изображения линзового ТП канала следующее: для всех точек поля коэффициенты передачи контраста для пространственных частот 15 и 30 мм-1 составляют соответственно 0,6 и 0,3.

Таким образом, основными недостатками прототипа являются малая величина углового поля линзового ТП канала и недостаточное относительное отверстие зеркально-линзового канала видимого диапазона.

Повышение углового поля линзового ТП канала в прототипе неизбежно ведет к виньетированию наклонных пучков либо в зеркально-линзовом канале, либо в линзовом ТП канале и как результат к снижению освещенности на краях поля зрения, что снижает эффективность мер по повышению светосилы каждого канала в двухканальном зеркально-линзовом объективе. Для уменьшения виньетирования необходимо повышать геометрическое относительное отверстие зеркально-линзового канала, а в прототипе это невозможно без ухудшения качества изображения зеркально-линзового канала из-за возрастания аберраций широких пучков - сферической и комы.

Предложен двухканальный коаксиальный зеркально-линзовый объектив, содержащий зеркально-линзовый канал видимого диапазона и линзовый ТП канал, расположенный в зоне центрального экранирования зеркально-линзового канала видимого диапазона, имеющие общую визирную ось. Зеркально-линзовый канал выполнен в виде четырех компонентов, первый из которых по ходу лучей имеет форму защитной плоскопараллельной пластинки с вырезанной центральной зоной, в состав второго компонента входит выпукло-плоская линза, на последней поверхности второго компонента нанесено кольцевое отражающее покрытие, третий компонент выполнен в виде мениска, обращенного вогнутыми поверхностями к пространству предметов, имеющего внутреннее отражающее покрытие на второй поверхности и вырезанную центральную зону, четвертый компонент состоит из трех одиночных линз, первая из которых по ходу лучей имеет форму мениска. Первый и третий компоненты зеркально-линзового канала выполнены из стекла одной марки с показателем преломления не более 1,52. Линзовый ТП канал выполнен в виде трех одиночных линз в форме менисков, разнесенных вдоль оптической оси на значительное расстояние, первый и третий из которых к плоскости изображений обращены своими вогнутыми поверхностями, а второй - выпуклыми. Один из компонентов линзового ТП канала установлен в отверстии первого компонента зеркально-линзового канала видимого диапазона. Во второй компонент зеркально-линзового канала введен склеенный блок из двух линз, первая из которых имеет форму мениска, обращенного выпуклыми поверхностями к плоскости изображений, вторая имеет двояковогнутую форму, при этом диаметр второй линзы соответствует внешнему диаметру кольцевого отражающего покрытия. Вторая и третья линзы четвертого компонента выполнены двояковыпуклыми. Оптические оси линзового ТП канала и зеркально-линзового канала видимого диапазона совпадают, при этом при выполнении соотношений (1) имеют место следующие соотношения:

где Lзл - длина вдоль оптической оси от первой поверхности до плоскости изображений зеркально-линзового канала видимого диапазона;

Lзл2 - длина вдоль оптической оси от первой поверхности второго компонента до плоскости изображений зеркально-линзового канала видимого диапазона;

f'зл, f'2зл, f'3зл, f'4зл - фокусные расстояния зеркально-линзового канала и его второго, третьего и четвертого компонентов соответственно;

f'10 - фокусное расстояние первого мениска линзового ТП канала;

f'12 - фокусное расстояние третьего мениска линзового ТП канала;

f'11+12 - эквивалентное фокусное расстояние второго и третьего менисков линзового ТП канала, расположенных вдоль оптической оси на расстоянии d11,12.

Предлагаемый двухканальный коаксиальный зеркально-линзовый объектив позволяет обеспечить более высокие технические характеристики - повысить угловое поле линзового ТП канала, повысить геометрическое и эффективное относительное отверстие зеркально-линзового канала видимого диапазона при сохранении высокого качества изображения в каждом канале.

Более высокие технические характеристики предлагаемого объектива обеспечиваются новой совокупностью отличительных признаков:

- во второй компонент зеркально-линзового канала введен склеенный блок из двух линз, первая из которых имеет форму мениска, обращенного выпуклыми поверхностями к плоскости изображений, вторая имеет двояковогнутую форму, при этом диаметр второй линзы соответствует внешнему диаметру кольцевого отражающего покрытия, вторая и третья линзы четвертого компонента выполнены двояковыпуклыми, при этом имеют место соотношения (2);

- оптические оси линзового ТП канала и зеркально-линзового канала видимого диапазона совпадают, при этом в линзовом ТП канале имеют место соотношения (3), (4) и (5).

Выполнение второго компонента зеркально-линзового канала в виде склеенного блока из двух линз, первая из которых имеет форму мениска, обращенного выпуклыми поверхностями к плоскости изображений, вторая имеет двояковогнутую форму, при этом диаметр второй линзы соответствует внешнему диаметру кольцевого отражающего покрытия, и выполнение второй и третьей линзы четвертого компонента двояковыпуклыми при соблюдении указанных соотношений (2) позволяет улучшить коррекцию аберраций широких осевых и наклонных пучков лучей и тем самым повысить геометрическое относительное отверстие зеркально-линзового канала до 1:0,8, а эффективное относительное отверстие до 1:1,3 при сохранении высокого качества изображения.

Выполнение в линзовом ТП канале компонентов в соответствии с указанными соотношениями (3) и (4) позволяет увеличить угловое поле канала более чем в 2 раза по сравнению с прототипом и одновременно сократить длину линзового ТП канала в соответствии с соотношением (5) при сохранении светосилы и высокого качества изображения, близкого к дифракционному для спектрального интервала 8-12 мкм при соотношении длины линзового ТП канала и его фокусного расстояния не более 1,3. Последнее обстоятельство позволяет в двухканальном объективе расположить коаксиально линзовый ТП канал и зеркально-линзовый канал видимого диапазона без ущерба для массогабаритных характеристик и без дополнительного виньетирования в любом канале.

Авторам не известны оптические системы двухканальных зеркально-линзовых объективов, обладающие признаками, сходными с признаками, отличающими предлагаемую систему от прототипа, поэтому данная система двухканального коаксиального объектива обладает существенными отличиями.

Предложенное изобретение иллюстрируется следующими графическими материалами:

Фиг.1 - оптическая схема двухканального коаксиального зеркально-линзового объектива;

Фиг.2 - частотно-контрастная характеристика (ЧКХ) зеркально-линзового канала;

Фиг.3 - ЧКХ линзового ТП канала;

Фиг.4 - функция концентрации энергии (ФКЭ) линзового ТП канала.

На фиг.1 изображена предлагаемая оптическая схема двухканального коаксиального зеркально-линзового объектива, каналы которого имеют общую визирную ось.

Оптическая система содержит зеркально-линзовый канал ПНВ с приемником излучения видимого диапазона и линзовый ТП канал с ИК ФПУ, расположенный в зоне центрального экранирования зеркально-линзового канала, при этом каналы расположены коаксиально и их оптические оси совпадают.

Зеркально-линзовый канал содержит установленные по ходу лучей четыре компонента. Компонент 1 - это защитная плоскопараллельная пластинка с вырезанной центральной зоной. Компонент 2 состоит из выпукло-плоской линзы 5 и блока 6, склеенного из двух линз, первая из которых имеет форму мениска, обращенного выпуклыми поверхностями к плоскости изображений, вторая имеет двояковогнутую форму, на последней поверхности которой нанесено кольцевое отражающее покрытие, а ее диаметр соответствует внешнему диаметру кольцевого отражающего покрытия. Компонент 3 выполнен в виде мениска, обращенного вогнутыми поверхностями к пространству предметов, имеющего внутреннее отражающее покрытие на второй поверхности и вырезанную центральную зону. Компонент 4 состоит из трех одиночных линз: мениска 7 и двух двояковыпуклых линз 8 и 9. Компоненты 1 и 3 зеркально-линзового канала выполнены из стекла одной марки с показателем преломления не более 1,52. При этом имеют место вышеприведенные соотношения (2).

Линзовый ТП канал выполнен в виде трех одиночных линз 10, 11, 12 в форме менисков, разнесенных вдоль оптической оси на значительное расстояние, первый и третий из которых к плоскости изображений обращены своими вогнутыми поверхностями, а второй - выпуклыми. Один из компонентов линзового ТП канала установлен в отверстии первого компонента зеркально-линзового канала видимого диапазона. При этом имеют место следующие соотношения (3)-(5).

Излучение, идущее от удаленного объекта, проходя последовательно компоненты 1, 2 зеркально-линзового канала, отражается первый раз от внутреннего зеркального покрытия на второй поверхности мениска 3, второй раз - от кольцевого отражающего покрытия, нанесенного на последней вогнутой поверхности склеенного из двух линз блока 6, далее проходит линзы 7, 8, 9 компонента 4, фокусируется и образует изображение объекта в плоскости, с которой совмещена плоскость чувствительной площадки приемника излучения канала видимого диапазона.

ИК излучение, идущее от удаленного объекта, проходит компоненты 10, 11, 12 линзового ТП канала, фокусируется ими и образует изображение объекта в плоскости приемника излучения ТП канала (ИК ФПУ).

В качестве конкретного примера исполнения двухканального коаксиального зеркально-линзового объектива в таблицах 1-5 приведены конструктивные параметры оптических систем каналов объектива, а также их ЧКХ и ФКЭ, подтверждающие высокое качество изображения, даваемое зеркально-линзовым каналом и линзовым ТП каналом.

Таблица 1
Конструктивные параметры зеркально-линзового канала (f'=71 мм; диаметр входного зрачка D=90 мм; D:f'=1:0,79; Dэф:f'=1,3; угловое поле в пространстве предметов 2ω=8°; размер чувствительной площадки приемника излучения 2y'=10 мм; спектральный интервал 0,68-0,88 мкм)
Поз.№ пов.RdМарка стекла
117К8
270
53181,5610К8
412
65-115,709ТФ5
6-108,6431,8
37-21,239К8
8-198,57-9-К8
9-121,23-28,28
610590,3830,68
711-68,503ТФ10
12-135,280,5
81341,356,5ТК21
14-340,340,5
91545,004,5ТК21
16-1177,42

Таблица 2
Конструктивные параметры линзового ТП канала (фокусное расстояние f'=80 мм; относительное отверстие D:f'=1:1,6; размер чувствительной площадки ИК приемника 2y'=19,2 мм, угловое поле в пространстве предметов 2ω=13°4'; спектральный интервал 8-12 мкм)
Поз.№ пов.RdМатериал
10166,685,0Ge
281,6656,2
113-33,114,3Ge
4-37,4915,0
12537,494,3Ge
640,93

Таблица 3
ЧКХ зеркально-линзового канала
Частота, мм-1Точка на осиω=2°ω=4°
МSМS
5,00,980,970,980,950,97
10,00,960,950,960,900,95
15,00,940,920,930,860,92
20,00,910,900,910,820,89
25,00,890,780,890,780,86
30,00,870,850,860,740,84
35,00,850,820,840,710,81
40,00,830,790,810,680,78
45,00,810,760,780,650,75
50,00,790,720,760,630,71

Таблица 4
ЧКХ линзового ТП канала
Частота, мм-1Точка на осиω=3,4°ω=6,8°
МSМS
5,00,880,860,870,860,86
10,00,760,720,740,730,70
15,00,630,590,610,610,56
20,00,530,480,500,510,45
25,00,440,390,410,420,36
30,00,350,300,330,330,27
35,00,280,220,250,250,20
40,00,200,150,170,180,14
45,00,130,090,110,110,09
50,00,090,050,070,070,05

Таблица 5
ФКЭ линзового ТП канала
Радиус пятна, мкмЭнергия, отн.ед
Точка на осиω=3,4°ω=6,8°
5,00,220,190,17
10,00,570,500,47
15,00,750,700,68
20,00,800,780,77
25,00,830,820,81

В таблице 1 приведены конструктивные параметры зеркально-линзового канала, имеющего фокусное расстояние f'=71 мм; диаметр входного зрачка D=90 мм; геометрическое относительное отверстие D:f'=1:0,79; эффективное относительное отверстие Dэф:f'=1,3; угловое поле в пространстве предметов 2ω=8°; размер чувствительной площадки приемника излучения 2y'=10 мм; спектральный интервал 0,68-0,88 мкм. В качестве приемника излучения в конкретном примере исполнения применена низкоуровневая телевизионная камера размером 1/2 дюйма. В таблице 1 позиция линз указана в соответствие с фиг.1; № пов. - номер преломляющей или отражающей поверхности по ходу луча; R - радиус преломляющих или отражающих поверхностей; d - толщины линз и воздушных промежутков. Все линейные размеры приведены в миллиметрах. Апертурная диафрагма совмещена с третьей преломляющей поверхностью. Масса оптических компонентов канала составляет 675 г.

Как следует из таблицы 1, конструктивные параметры зеркально-линзового канала видимого диапазона удовлетворяют следующим соотношениям: Lзл=2,26f'зл, Lзл2=1,18f'зл, f'4зл=0,53f'зл, т.е. соответствуют соотношениям (2).

В таблице 2 приведены конструктивные параметры линзового ТП канала объектива, имеющего фокусное расстояние f'=80 мм; относительное отверстие D:f'=1:1,6; размер чувствительной площадки ИК-приемника 2y'=19,2 мм; угловое поле в пространстве предметов 2ω=13°40'; спектральный интервал 8-12 мкм.

Апертурная диафрагма совмещена с первой преломляющей поверхностью.

Масса оптических компонентов канала составляет 100 г.

Как следует из таблицы 2, длина зеркально-линзового канала составляет 1,29 от его фокусного расстояния, при этом конструктивные параметры его компонентов соответственно равны: f'10=1,21f'л; f'11+12=1,06f'л; f'12=0,96f'л; d11,12≤0,18f'11+12, т.е. соответствуют соотношениям (3)-(5).

В таблице 3 и на фиг.2 приведены ЧКХ для зеркально-линзового канала. В таблице 3 коэффициенты передачи контраста указаны в относительных единицах для пространственных частот, отнесенных к плоскости чувствительной площадки приемника видимого диапазона, в мм-1, в диапазоне от 0 до 50 мм-1 для точки на оси и для точек на середине и краю поля зрения (для углов наклона внеосевых пучков 2 и 4°). Для внеосевых точек изображения коэффициенты передачи контраста приведены для меридионального (М) и сагиттального (S) сечений. На фиг.2 по оси абсцисс отложены значения пространственных частот, отнесенные к плоскости чувствительной площадки приемника видимого диапазона, в мм-1; по оси ординат - значения коэффициентов передачи контраста, отн.ед. Графики ЧКХ представлены для точки на оси (обозначение "0"), для точек на середине поля (обозначение "2°") и для точек на краю поля (обозначение "4°") как для меридионального (м), так и сагиттального сечений (s). Для сравнения на фиг.3 приведена также ЧКХ безаберрационного объектива (обозначение "дифр."). Из графиков фиг.3 и данных таблицы 4 следует, что для точки на оси коэффициенты передачи контраста для пространственных частот 30 и 50 мм-1 составляют соответственно 0,87 и 0,79, а для точек на краю поля зрения - соответственно 0,74 и 0,63, что не хуже, чем у объектива-прототипа.

В таблице 4 и на фиг.3 приведена ЧКХ линзового ТП канала. Значения коэффициентов передачи контраста приведены для точки на оси, середины и края изображения (для углов наклона 3,4° и 6,8°), остальные обозначения аналогичны таблице 3 и фиг.2. Из графиков фиг.3 и данных таблицы 4 следует, что для всех точек изображения средние коэффициенты передачи контраста для пространственной частоты 15 мм-1 составляют примерно 0,6, а для частоты 30 мм-1 - примерно 0,3, что не хуже, чем у объектива-прототипа.

В таблице 5 и на фиг.4 приведена ФКЭ для линзового ТП канала. Значения энергии в относительных единицах характеризуют, какая часть всей энергии пятна находится в круге указанного радиуса. Из графиков фиг.4 и данных таблицы 5 следует, что в пределах элемента приемника радиусом 0,025 мм сосредоточено до 80% всей энергии, что достаточно близко к дифракционному пределу и не хуже, чем у объектива-прототипа.

Таким образом, предлагаемый двухканальный коаксиальный зеркально-линзовый объектив, обладающий совокупностью указанных отличительных признаков, в сравнении с прототипом позволяет обеспечить более высокие технические характеристики - повышение углового поля линзового ТП канала, повышение геометрического и эффективного относительного отверстия зеркально-линзового канала видимого диапазона при сохранении высокого качества изображения в каждом канале и отсутствии виньетирования наклонных пучков в двухканальном зеркально-линзовом объективе.

Предлагаемый двухканальный коаксиальный зеркально-линзовый объектив может быть использован для работы в пассивных и активных двухканальных ПНВ, имеющих один канал для работы совместно с приемниками видимого диапазона, а второй - с матричными ИК ФПУ, для решения задач обнаружения и опознавания объектов при пониженной освещенности и в сложных условиях наблюдения.

Литература

1. РФ 94013373. Совмещенный объектив // Ларкин Е.В., Арбузова И.В., Данилкин Ф.А. - 1995. - Бюл. №35.

2. Гейхман И.Л., Волков В.Г. Основы улучшения видимости в сложных условиях. - М.: ООО Недра-Бизнесцентр. 1999. - 286 с.

3. РФ №2256205. Двухканальный зеркально-линзовый объектив (варианты) // Косолапов Г.И., Журавлев П.В., Хацевич Т.Н. - 2005. - Бюл. №19.

Двухканальный коаксиальный зеркально-линзовый объектив, содержащий зеркально-линзовый канал видимого диапазона и линзовый тепловизионный (ТП) канал, расположенный в зоне центрального экранирования зеркально-линзового канала видимого диапазона, имеющие общую визирную ось, при этом зеркально-линзовый канал выполнен в виде четырех компонентов, первый из которых по ходу лучей имеет форму защитной плоскопараллельной пластинки с вырезанной центральной зоной, в состав второго компонента входит выпукло-плоская линза, на последней поверхности второго компонента нанесено кольцевое отражающее покрытие, третий компонент выполнен в виде мениска, обращенного вогнутой поверхностью к пространству предметов, имеющего внутреннее отражающее покрытие на второй поверхности и вырезанную центральную зону, четвертый компонент состоит из трех одиночных линз, первая из которых по ходу лучей имеет форму мениска, при этом первый и третий компоненты зеркально-линзового канала выполнены из стекла одной марки с показателем преломления не более 1,52, а линзовый ТП канал выполнен в виде трех одиночных линз в форме менисков, разнесенных вдоль оптической оси на значительное расстояние, первый и третий из которых к плоскости изображений обращены своими вогнутыми поверхностями, а второй - выпуклой, один из компонентов линзового ТП канала установлен в отверстии первого компонента зеркально-линзового канала видимого диапазона, при этом имеют место следующие соотношения:

отличающийся тем, что во второй компонент зеркально-линзового канала введен склеенный блок из двух линз, первая из которых имеет форму мениска, обращенного выпуклой поверхностью к плоскости изображений, вторая имеет двояковогнутую форму, при этом диаметр второй линзы соответствует внешнему диаметру кольцевого отражающего покрытия, вторая и третья линзы четвертого компонента выполнены двояковыпуклыми, оптические оси линзового ТП канала и зеркально-линзового канала видимого диапазона совпадают, при этом имеют место следующие соотношения:

где Lзл - длина вдоль оптической оси от первой поверхности до плоскости изображений зеркально-линзового канала видимого диапазона;

Lзл2 - длина вдоль оптической оси от первой поверхности второго компонента до плоскости изображений зеркально-линзового канала видимого диапазона;

Lл - длина вдоль оптической оси от первой поверхности до плоскости изображений линзового ТП канала;

f'зл, f'2зл, f'3зл, f'4зл - фокусные расстояния зеркально-линзового канала и его второго, третьего и четвертого компонентов соответственно;

f10 - фокусное расстояние первого мениска линзового ТП канала;

f12 - фокусное расстояние третьего мениска линзового ТП канала;

f11+12 - эквивалентное фокусное расстояние второго и третьего менисков линзового ТП канала, расположенных вдоль оптической оси на расстоянии d11,12.



 

Похожие патенты:

Изобретение относится к области оптического приборостроения, а именно к панорамным зеркально-линзовым системам, и может быть использована, например, в охранных системах наблюдения.

Изобретение относится к оптическому приборостроению, в частности к длиннофокусным зеркально-линзовым объективам, и может быть использовано в оптико-электронных, фотографических и других приборах, работающих с различными приемниками излучения в широкой спектральной области, охватывающей видимый диапазон и ближнюю инфракрасную область.

Изобретение относится к оптическим системам и может использоваться в оптических приборах, работающих с ПЗС-матрицей, например, для приема энергии. .

Изобретение относится к оптическому приборостроению и может быть использовано в различных оптических системах, работающих в среднем и дальнем ИК-диапазоне длин волн, например, в тепловизионных приборах.

Изобретение относится к объективам, работающим в дальнем или в среднем ИК-диапазоне и может быть использовано в тепловизионных приборах. .

Изобретение относится к области приборостроения наблюдательных систем и может быть использовано в самых различных областях науки и техники, в частности для построения комплексированных систем обнаружения и распознавания объектов, в астрономии и дистанционном зондировании поверхности Земли и ее атмосферы из космоса, при построении охранных систем и т.д.

Изобретение относится к области оптического приборостроения, а именно к объективам многоканальных систем, и может быть использовано для работы в двухканальных приборах ночного видения (ПНВ), имеющих один канал для работы совместно с электронно-оптическими преобразователями (ЭОП), а второй - с матричными инфракрасными (ИК) фотоприемными устройствами (ФПУ), для решения задач обнаружения и опознавания объектов наблюдения при пониженной освещенности.

Изобретение относится к оптическому приборостроению и может быть использовано, например, в авиационных бортовых системах наблюдения с матрицами чувствительных элементов приемных устройств

Изобретение относится к оптическому приборостроению

Изобретение относится к области оптического приборостроения и используется в обзорно-панорамных оптико-электронных приборах и системах, преобразующих трехмерное панорамное пространство в угловом поле, близком к полусфере, в плоское изображение на приемнике излучения и работающих как в видимом, так и в ИК-диапазоне спектра

Изобретение относится к области оптического приборостроения и может быть использовано при изготовлении новых типов зеркально-линзовых телескопов, изображение в которых имеет вид квадрата или прямоугольника

Изобретение относится к области оптического приборостроения, а именно к активно-импульсным (АИ) оптико-электронным приборам (ОЭП) с регистрацией изображений на базе импульсных ЭОП или телевизионных камер, и может быть использовано в них в качестве осветителя, использующего полупроводниковый лазер с большим углом расходимости излучения, обеспечивающего импульсную подсветку объектов, в том числе на выносных наблюдательных пунктах

Изобретение относится к области оптического приборостроения и позволяет улучшить технические характеристики приемной оптической системы панорамного оптико-электронного прибора
Наверх