Патенты автора Колковский Юрий Владимирович (RU)

Изобретение относится к бытовой и медицинской технике, в частности к рециркуляторам для обеззараживания воздуха ультрафиолетовым облучением. Рециркулятор для обеззараживания воздуха ультрафиолетовым излучением с принудительной конвекцией воздушного потока включает не менее двух исполнительных органов, располагаемых внутри замкнутого объема, через который проходит воздушный поток, формируемый вентиляторами, состоящих из набора полупроводниковых диодов ультрафиолетового излучения, узла питания, узла термостабилизации исполнительного органа и блока управления устройства. При этом исполнительные органы выполнены в виде плоских диэлектрических пластин, на которых располагаются ультрафиолетовые диоды с двухсторонним расположением излучающих поверхностей относительно каждой диэлектрической пластины, причем расстояние между исполнительными органами не может превышать шаг расположения диодов на диэлектрической пластине, а максимальное количество диодов, располагаемых на одной диэлектрической пластине, равно n=L/(a+b), где L - вертикальное сечение воздушного потока в корпусе рециркулятора, а - зазор между ультрафиолетовыми диодами, равный шагу расположения диодов, b - ширина ультрафиолетового диода. Заявленное изобретение обеспечивает повышение надежности, исключение возможности распыления ядовитых паров ртути и повышение плотности мощности УФ-излучения, воздействующей на микроорганизмы в потоке воздуха. 2 з.п. ф-лы, 7 ил.

Изобретение относится к области изготовления полупроводниковых изделий. Коммутирующее устройство является псевдоморфным, изготовленным на базе гетероструктуры AlGaN/InGaN, а емкостный элемент представляет собой конденсатор. Кроме того, коммутирующее устройство включает подложку из сапфира, на которой последовательно размещены: буферный слой из AlN, буферный слой из GaN, слой из нелегированного GaN i-типа проводимости, сверхрешетка из AlXGa1-XN/GaN, буферный слой из GaN, сильнолегированный слой n-типа проводимости из AlXGa1-XN, спейсер из твердого раствора AlXGa1-XN, сглаживающий слой из GaN, канал из твердого раствора InXGa1-XN, и в интерфейсе InXGa1-XN/AlGaN гетероструктуры образован двумерный электронный газ (ДЭГ) высокой плотности, который служит нижней обкладкой конденсатора. Поверх твердого раствора InXGa1-XN размещен химически устойчивый сглаживающий слой из GaN, поверх которого нанесен слой диэлектрика из двуокиси гафния. Поверх диэлектрика размещены металлические электроды полосковой формы, которые образуют верхнюю обкладку конденсатора. При этом емкостный элемент устройства выполнен с минимальным количеством глубоких электронных ловушек (DX), а канал выполнен упруго-напряженным псевдоморфным с концентрацией InGa 15-25%. Изобретение обеспечивает повышение надежности устройства, эффективности подавления токового коллапса, повышение скорости переключения и уровня выходной мощности, а также ослабление процесса деградации в гетероструктуре. 3 з.п. ф-лы, 3 ил.

Изобретение относится к технике СВЧ. Технический результат - повышение надежности и скорости переключения, увеличение уровня выходной мощности и уровня радиационной стойкости. Для этого коммутирующее устройство СВЧ содержит электроды и емкостной элемент, представляющий собой конденсатор, при этом коммутирующее устройство СВЧ включает подложку из сапфира, на которой последовательно размещены: буферный слой из AlN, буферный слой из GaN, слой из нелегированного GaN, слой из твердого раствора AlGaN и в интерфейсе GaN/AlGaN гетероструктуры образован двумерный электронный газ высокой плотности, который служит нижней обкладкой конденсатора. Поверх твердого раствора AlGaN размещен сглаживающий слой из GaN, поверх которого нанесен диэлектрик, содержащий слой из двуокиси гафния и слой из оксида алюминия. Поверх диэлектрика размещены металлические электроды полосковой формы, которые образуют верхнюю обкладку конденсатора. 3 ил.

Изобретение относится к области полупроводниковых изделий, Технический результат - повышение надежности устройства путем снижения влияния DX центров, повышения плотности электронов и устранения деградации в гетероструктуре. Для этого переключатель СВЧ содержит подложку из сапфира, на которой последовательно размещены буферный слой AlN, буферный слой из GaN, буферный слой из нелегированного GaN i-типа проводимости, двумерный электронный газ высокой плотности, который служит нижней обкладкой конденсатора, сглаживающий слой из нитрида галлия, поверх которого нанесен слой диэлектрика из двуокиси гафния, металлические электроды полосковой формы, которые образуют верхнюю обкладку конденсатора, и два конденсатора, образующих двойные ВЧ-ключи. На буферном слое из нелегированного GaN i-типа проводимости последовательно размещены сверхрешетка из AlXGa1-XN/GaN, буферный слой из GaN, сильнолегированный слой n-типа проводимости из AlXGa1-XN, спейсер из AlXGa1-XN, сглаживающий слой, канал из InXGa1-XN, сглаживающий дополнительный слой из GaN, слой диэлектрика из двуокиси гафния и дополнительный слой диэлектрика. При этом переключатель выполнен с минимальным количеством глубоких электронных ловушек DX, а канал выполнен упругонапряженным псевдоморфным с концентрацией InGa 15-25%, а двумерный электронный газ образован между каналом и слоем из AlXGa1-XN. 3 з.п. ф-лы. 1 табл., 2 ил.

Изобретение относится к области полупроводниковых изделий. Технический результат - повышение надежности устройства путем снижения влияния DX центров, повышения плотности электронов и устранения деградации в гетероструктуре. Для этого переключатель СВЧ содержит подложку, на которой последовательно размещены: буферный слой AlN, буферный слой из GaN, буферный слой из нелегированного GaN i-типа проводимости. Кроме того, переключатель СВЧ содержит двумерный электронный газ высокой плотности, который служит нижней обкладкой конденсатора, сглаживающий слой из нитрида галлия, слой диэлектрика из двуокиси гафния, металлические электроды полосковой формы, которые образуют верхнюю обкладку конденсатора, и два конденсатора, образующих двойные ВЧ-ключи. Подложка выполнена из изолирующего теплопроводящего CVD поликристаллического алмаза, а на буферном слое из нелегированного GaN i-типа проводимости последовательно размещены сверхрешетка из AlXGa1-XN/GaN, буферный слой из GaN, сильнолегированный слой n-типа проводимости из AlXGa1-XN, спейсер из AlXGa1-XN, сглаживающий слой, канал из InXGa1-XN, сглаживающий дополнительный слой, спейсер из AlXGa1-XN, сильнолегированный слой AlXGa1-XN, слой из GaN, слой диэлектрика из двуокиси гафния и дополнительный слой диэлектрика. При этом переключатель выполнен с минимальным количеством глубоких электронных ловушек DX, а канал выполнен упруго-напряженным псевдоморфным с концентрацией InGa 15-25% и легирован с двух сторон, а двумерный электронный газ образован между каналом и слоем из AlXGa1-XN. 3 з.п. ф-лы, 1 табл., 2 ил.

Изобретение относится к области полупроводниковых изделий. Технический результат - повышение надежности устройства путем снижения влияния DX центров, повышения плотности электронов и устранения деградации в гетероструктуре. Для этого переключатель СВЧ содержит подложку, на которой последовательно размещены: буферный слой AlN, буферный слой из GaN, буферный слой из нелегированного GaN i-типа проводимости, двумерный электронный газ высокой плотности, который служит нижней обкладкой конденсатора, сглаживающий слой из нитрида галлия, слой диэлектрика из двуокиси гафния, металлические электроды полосковой формы, которые образуют верхнюю обкладку конденсатора, и два конденсатора, образующих двойные ВЧ-ключи. На буферном слое из нелегированного GaN i-типа проводимости последовательно размещены сверхрешетка из AlXGa1-XN/GaN, буферный слой из GaN, сильнолегированный слой n-типа проводимости из AlXGa1-XN, спейсер из AlXGa1-XN, сглаживающий слой, канал из GaN, сглаживающий дополнительный слой, спейсер из AlXGa1-XN, сильнолегированный слой AlXGa1-XN, слой из GaN, слой диэлектрика из двуокиси гафния и дополнительный слой диэлектрика. При этом переключатель выполнен с минимальным количеством глубоких электронных ловушек DX, а канал легирован с двух сторон, а двумерный электронный газ образован между каналом и слоем из AlXGa1-XN. 2 з.п. ф-лы, 1 табл., 2 ил.

Изобретение относится к области создания полупроводниковых изделий, а именно к мощному переключателю СВЧ на основе соединения галлия, содержащему подложку, поверх которой размещена эпитаксиальная гетероструктура и барьер Шоттки. Технический результат заключается в уменьшении теплового сопротивления мощных переключателей, повышении уровня допустимой входной мощности, повышении скорости переключения, повышении надежности приборов, уровня радиационной стойкости и в снижении утечки тока затвора и уровня деградации. Для этого переключатель СВЧ изготовлен на нитриде галлия, где в качестве подложки использован сапфир. Затем последовательно размещены: буферный слой AlN, буферный слой из GaN, второй буферный слой из нелегированного нитрида галлия (i-тип), твердый раствор AlXGa1-XN, и в интерфейсе GaN/AlXGa1-XN гетероструктуры образован двумерный электронный газ высокой плотности, который служит нижней обкладкой конденсатора, поверх твердого раствора AlXGa1-XN размещен химически устойчивый сглаживающий слой из нитрида галлия, поверх которого нанесен диэлектрик, содержащий слой из двуокиси гафния. Поверх диэлектрика размещены металлические электроды полосковой формы, которые образуют верхнюю обкладку конденсатора, при этом переключатель содержит два конденсатора, образующие двойные ВЧ-ключи. 1 з.п. ф-лы, 1 ил.

Изобретение относится к измерительной технике. Способ контроля состава материала при формировании структуры заключается в том, что в процессе формирования слоя осуществляют измерение эллипсометрических параметров Δ и ψ. Предварительно определяют эллипсометрическим методом с использованием лазерного эллипсометра с длиной волны 0,6328 мкм показатель преломления прозрачной подложки n1 с обратной матовой поверхностью. На полированные поверхности прозрачных подложек наносят металлические пленки, освещают подложки лучом лазера со стороны нанесенной пленки, отбирая образцы, пропускающие луч лазера, на лазерном эллипсометре с длиной волны 0,6328 мкм измеряют эллипсометрические параметры Δ и ψ пленки, не пропускающей луч лазера, рассчитывают для нее с использованием программно-аппаратного средства, связанного с эллипсометром, оптические константы пленки - показателя преломления n и коэффициента экстинкции k и формируют эталонную зависимость в виде функции Δ=f(ψ) с использованием n1 и показателя преломления пленки n и коэффициента экстинкции k. Экспериментально определяют эллипсометрические параметры Δэксп и ψэксп для полупрозрачных пленок, пропускающих луч лазера, результаты экспериментальных значений фиксируют в плоскости для соотнесения с эталонной зависимостью Δ=f(ψ). Технический результат - обеспечение точности определения толщины и качества металлических пленок. 4 ил.

Изобретение относится к электронной технике. Модулированно-легированный полевой транзистор содержит фланец, пьедестал, гетероэпитаксиальную структуру, буферный слой, исток, затвор, сток и омические контакты. Пьедестал изготовлен из теплопроводящего слоя поликристаллического алмаза. Поверх пьедестала размещен кристалл транзистора, содержащий последовательно размещенные базовую подложку из GaAs, буферные слои, гетероэпитаксиальную гетероструктуру на основе AlGaAs/GaAs, а на поверхности гетероэпитаксиальной структуры, между истоком, затвором и стоком, последовательно размещены слой диэлектрического покрытия и два барьерных слоя, выполненные из двуокиси гафния и оксида металла, при этом барьерные слои выполнены с суммарной толщиной 1,0-4,0 нм, в области затвора барьерные слои размещены под затвором, непосредственно на эпитаксиальной структуре в виде градиентного слоя из GaAs n-типа проводимости. Технический результат заключается в снижении влияния DX центров на приборные характеристики, в увеличении подвижности основных носителей зарядов, в обеспечении минимальных утечек тока затвора, в повышении теплоотвода от пьедестала, в достижении наименьшего коэффициента шума в ГГц-диапазоне частот, а также в повышении эффективности и надежности мощных полевых транзисторов. 7 з.п. ф-лы, 3 табл.

Изобретение относится к электронной технике, а именно к полупроводниковым приборам, предназначенным для усиления СВЧ-электромагнитных колебаний. Гетероструктурный модулировано-легированный полевой транзистор содержит фланец, пьедестал, гетероэпитаксиальную структуру, буферный слой, исток, затвор, сток и омические контакты. Пьедестал имеет толщину 30-200 мкм и выполнен из теплопроводящего слоя CVD поликристаллического алмаза с имплантированным Ni и с отожженными приповерхностными слоями с двух сторон. Поверх пьедестала расположена подложка из монокристаллического кремния толщиной 10-20 мкм, буферный слой. На поверхности гетероэпитаксиальной структуры, между истоком, затвором и стоком, последовательно размещены дополнительные слои теплопроводящего поликристаллического алмаза, барьерный слой из двуокиси гафния и барьерный слой из оксида алюминия. При этом барьерные слои выполнены с суммарной толщиной 1,0-4,0 нм. Кроме того, в области затвора барьерные слои размещены под затвором, непосредственно на эпитаксиальной структуре в виде слоя из твердого раствора AlGaN. Технический результат заключается в повышении теплоотвода от пьедестала и активной области транзистора, обеспечении минимальных утечек тока затвора и достижении наименьшего коэффициента шума в ГГц-диапазоне частот. 3 з.п. ф-лы, 6 ил.

Изобретение относится к электронной технике, а именно к полупроводниковым приборам, предназначенным для усиления СВЧ-электромагнитных колебаний. Гетероструктурный модулировано-легированный полевой транзистор содержит фланец, пьедестал, гетероэпитаксиальную структуру, буферный слой, исток, затвор, сток и омические контакты. Пьедестал имеет толщину по меньшей мере равную 150 мкм и изготовлен из теплопроводящего слоя CVD поликристаллического алмаза, выполненного с имплантированным Ni и отожженным. Поверх пьедестала расположена базовая подложка из GaAs, буферный слой, гетероэпитаксиальная гетероструктура на основе GaAs/AlGaAs/InGaAs, а на поверхности гетероэпитаксиальной структуры, между истоком, затвором и стоком, последовательно размещены дополнительные слои теплопроводящего поликристаллического алмаза, барьерный слой из двуокиси гафния и дополнительный барьерный слой из оксида металла, при этом барьерные слои выполнены с суммарной толщиной 1,0-4,0 нм. В области затвора барьерные слои размещены под затвором, непосредственно на эпитаксиальной структуре в виде градиентного слоя из GaAs n-типа проводимости. Технический результат заключается в повышении теплоотвода от пьедестала и активной области транзистора, обеспечении минимальных утечек тока затвора и достижении наименьшего коэффициента шума в ГГц-диапазоне частот. 4 з.п. ф-лы, 5 ил., 2 табл.

Изобретение относится к области полупроводниковой техники. Способ изготовления мощного СВЧ-транзистора включает нанесение на фланец слоя припоя, формирование пьедестала, нанесение подслоя, обеспечивающего крепление кристалла транзистора к пьедесталу, формирование на базовой подложке из монокристаллического кремния p-типа проводимости, ориентированного по плоскости (111), вспомогательных эпитаксиальных слоев, нанесение базового слоя и буферного слоя для выращивания эпитаксиальной структуры полупроводникового прибора на основе широкозонных III-нитридов, нанесение на базовый слой теплопроводящего CVD поликристаллического алмаза, удаление базовой подложки вместе со вспомогательными эпитаксиальными слоями до базового слоя, наращивание на базовом слое гетероэпитаксиальной структуры на основе широкозонных III-нитридов и формирование истока, затвора и стока. В качестве пьедестала используют теплопроводящий слой CVD поликристаллического алмаза, в приповерхностную область которого имплантируют никель и отжигают. Перед формированием стока, затвора и истока поверх кристалла транзистора последовательно осаждают дополнительный слой из изолирующего поликристаллического алмаза и дополнительные барьерные слои из двуокиси гафния и оксида алюминия, с суммарной толщиной 1,0-4,0 нм. Изобретение обеспечивает увеличение теплоотвода от активной части СВЧ-транзистора и минимизации утечки тока затвора. 5 з.п. ф-лы, 4 ил.

Изобретение относится к электронной технике и может быть использовано в качестве активных элементов СВЧ-устройств различного назначения. Мощный транзистор СВЧ с многослойной эпитаксиальной структурой содержит базовую подложку из кремния, теплопроводящий поликристаллический слой алмаза, эпитаксиальную структуру на основе широкозонных III-нитридов, буферный слой, исток, затвор, сток и омические контакты. Слой теплопроводящего поликристаллического алмаза имеет толщину 0,1-0,15 мм, а на поверхности эпитаксиальной структуры между истоком, затвором и стоком последовательно размещены дополнительный слой теплопроводящего поликристаллического алмаза, барьерный слой из двуокиси гафния и дополнительный барьерный слой из оксида алюминия. При этом барьерные слои из двуокиси гафния и оксида алюминия имеют суммарную толщину 1,0-4,0 нм, кроме того, они размещены под затвором, непосредственно на эпитаксиальной структуре в виде слоя из твердого раствора AlGaN n-типа проводимости. Технический результат заключается в увеличении теплопереноса от активной области транзистора и минимизации утечек тока. 2 з.п. ф-лы, 4 ил.

Изобретение относится к электронной технике и может быть использовано в качестве активных элементов СВЧ-устройств различного назначения. Мощный транзистор СВЧ содержит базовую подложку из кремния, теплопроводящий поликристаллический слой алмаза, эпитаксиальную структуру на основе широкозонных III-нитридов, буферный слой, исток, затвор, сток и омические контакты. При этом базовая подложка из кремния выполнена толщиной менее 10 мкм, слой теплопроводящего поликристаллического алмаза имеет толщину по меньшей мере, равную 0,1 мм, а на поверхности эпитаксиальной структуры последовательно размещены дополнительный слой теплопроводящего поликристаллического алмаза и барьерный слой из двуокиси гафния толщиной 1,0-4,0 нм, который в области затвора размещен под затвором, непосредственно на эпитаксиальной структуре в виде слоя из твердого раствора AlGaN n-типа проводимости. Технический результат заключается в повышении выходной СВЧ-мощности, эффективном отводе тепла от активной области транзистора и минимизации утечек тока. 2 з.п. ф-лы, 4 ил.

Изобретение относится к электронной технике, а именно к полупроводниковым приборам, предназначенным для усиления СВЧ-электромагнитных колебаний. СВЧ-транзистор содержит базовую подложку из кремния, теплопроводящий поликристаллический слой алмаза, гетероэпитаксиальную структуру, буферный слой, исток, затвор, сток и омические контакты. При этом базовая подложка из кремния выполнена толщиной не более 10 мкм, слой теплопроводящего поликристаллического алмаза имеет толщину по меньшей мере равную 0,1 мм, а на поверхности гетероэпитаксиальной структуры, изготовленной из SiGe, последовательно размещены между истоком, затвором и стоком дополнительный слой теплопроводящего поликристаллического алмаза и барьерные слои из двуокиси гафния и из оксида алюминия, при этом барьерные слои из двуокиси гафния и оксида алюминия имеют суммарную толщину 1,0-4,0 нм, а, кроме того, они размещены под затвором, непосредственно на барьерном канале. Технический результат изобретения заключается в получении высоких значений напряжения пробоя, уровня СВЧ-мощности, низких значений шумов, теплового сопротивления, токов утечки и потребляемой мощности. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области полупроводниковой микроэлектроники. Биполярный транзистор СВЧ на основе гетероэпитаксиальных структур включает последовательно размещенные на подложке из монокристаллического кремния р-типа проводимости буферный слой из A1N, слой из поликристаллического алмаза, имеющий толщину, по меньшей мере, равную 0,1 мкм, нелегированный буферный слой из GaN, субколлекторный слой из GaN n+типа проводимости, коллектор из GaN n-типа проводимости, базу из твердого раствора AlуGa1-уN, промежуточный слой из AlуGa1-уN р+типа проводимости, эмиттер, включающий AlxGa1-xN n-типа проводимости, контактные слои, омические контакты и слои изолирующего диэлектрического покрытия из поликристаллического алмаза. Кроме того, составы слоев из AlxGa1-xN и AlуGa1-уN выполнены различающимися и с неодинаковой концентрацией легирующей примеси. Изобретение позволяет повысить выходную СВЧ-мощность, уменьшить значения емкости эмиттера, сопротивления базы, емкости коллектор-база, граничных состояний гетеропереходов и обеспечивает повышенные значения эффективности эмиттера, предельной частоты, а также обеспечивает эффективный отвод тепла от активной области транзистора. 1 з.п. ф-лы, 1 ил.

Изобретение относится к электронной технике, а именно к фазовращателям СВЧ на полупроводниковых приборах. Технический результат - повышение надежности устройства. Активный фазовращатель, выполненный на полупроводниковых приборах на основе SiGe и включающий широкополосный квадратурный полифазный фильтр, состоит из последовательно соединенных секций, построенных на RC пассивных цепях, и обеспечивающий возможность формирования двух ортогонально сдвинутых по фазе квадратурных сигналов, аналоговый дифференциальный сумматор, содержащий ячейки Гильберта, усилитель и сумматор, блок цифрового сигнала, выполненный с возможностью управления каждой ячейкой Гильберта, согласующее звено и блок преобразователя дифференциального сигнала в однополярный, кроме того, на выходе из квадратурного полифазного фильтра предусмотрены 4 эмиттерных повторителя, обеспечивающих согласование со схемой аналогового дифференциального сумматора. 2 н.п. ф-лы, 5 ил.

Группа изобретений относится к технике СВЧ и может быть использована в радиолокационной и радионавигационной технике, а также в средствах передачи информации. Техническим результатом является понижение уровня фазового шума выходного СВЧ-сигнала. Импульсный СВЧ-усилитель мощности на GaN СВЧ-транзисторах включает входной и выходной суммирующие микрополосковые мосты, в плечах которых установлены GaN СВЧ-транзисторы, затворы которых подключены к стабилизатору напряжения, а стоки подключены к быстродействующему импульсному модулятору, содержащему мощный коммутирующий ключ на силовом GaN транзисторе со скоростным драйвером, подключающим сток GaN СВЧ-транзисторов к накопительной емкости, мощный разрядный ключ на силовом GaN транзисторе со скоростным драйвером, обеспечивающим разряд емкостей GaN СВЧ-транзисторов после отключения коммутирующего ключа и источника питания с широтно-импульсной модуляцией, зарядный ключ на силовом GaN транзисторе со скоростным драйвером, обеспечивающий отключение накопительной емкости и стока GaN СВЧ-транзистора от источника питания с широтно-импульсной модуляцией с выходным напряжением 5-45 В и подключение накопительной емкости к источнику питания с широтно-импульсной модуляцией во время отключения напряжения питания от стоков GaN СВЧ-транзисторов коммутирующим ключом. 2 н. и 2 з.п. ф-лы, 5 ил.

Изобретение относится к радиотехнике

Изобретение относится к области полупроводниковой техники и может быть использовано при изготовлении таких приборов как, например, гетеропереходные полевые транзисторы (НЕМТ), биполярные транзисторы (BJT), гетеробиполярные транзисторы (НВТ), p-i-n диоды, диоды с барьером Шотки и многие другие

Изобретение относится к области радиотехники и может быть использовано при разработке аппаратуры, требующей защиты от внешних воздействий

 


Наверх