Патенты автора Геращенков Дмитрий Анатольевич (RU)

Изобретение относится к области микрометаллургии, в частности, к получению покрытий системы Ni-Cr-Мо-TiB2, полученных методом гетерофазного переноса. Способ получения функционально-градиентного покрытия на основе системы Ni-Cr-Mo-TiB2 включает нанесение дисперсных частиц на поверхность изделия методом сверхзвукового холодного газодинамического напыления с использованием трех автономно работающих дозаторов, при этом в первый дозатор помещают порошок из чистого никеля Ni фракцией 20-40 мкм, во второй - порошок из сплава Ni40Cr18Mo42 фракцией 40-50 мкм, а в третий - наноразмерный порошок диборида титана TiB2 фракцией 80-120 нм, после чего осуществляют напыление функционально-градиентного покрытия с использованием компьютерной программы, согласно которой вначале из первого дозатора производят напыление адгезионного подслоя никеля, затем первый дозатор отключают и включают второй и третий дозаторы, причем из второго дозатора начинают подавать порошок Ni40Cr18Mo42 с максимальным 100% расходом, а из третьего - с минимальным расходом TiB2, затем по линейному закону количество порошка из второго дозатора уменьшают, а из третьего - увеличивают до получения покрытия состава TiB2.Техническим результатом является получение функционально-градиентного покрытия на основе системы Ni-Cr-Mo-TiB2 с высокой микротвердостью 28,8-30 ГПа, стойкостью к износу от 0,6·10-9 до 0,9·10-9 и коррозии менее 0,001 мм/год, адгезией 64-73 МПа. 2 пр.

Изобретение относится к области получения многослойных материалов на основе стали и «мягких» металлов, таких как алюминий, медь, титан, и может быть использовано в машиностроении, приборостроении, энергомашиностроении, судостроении для увеличения ресурса работы механизмов за счет повышения износо- и коррозионной стойкости в агрессивных средах. Способ получения биметаллов с односторонним или двусторонним плакированием с помощью «холодного» газодинамического напыления (ХГДН) включает предварительную подготовку поверхности стального листа с образованием ювенильной поверхности и напыление на нее адгезивного слоя с последующим созданием на нем плакирующего слоя, при этом используют два автономно работающих дозатора. Ювенильную поверхность стального листа создают путем его обработки керамическим мелкодисперсным порошком из оксида алюминия фракцией 0,1-1,0 мкм из дозатора 1 при скорости гетерофазного потока 350-450 м/с, затем совместно с дозатором 1 включают дозатор 2 с металлическим порошком, состоящим из крупной - 5-50 мкм и мелкодисперсной фракции от 50 до 500 нм в соотношении 10:1, и наносят адгезивный слой толщиной 1,0-1,5 мм. Далее дозатор 1 отключают и из дозатора 2 поверх адгезивного слоя напыляют плакирующий слой требуемой толщины, причем при напылении порошковой смеси из дозатора 2 скорость гетерофазного потока увеличивают до 450-500 м/с. Введение ультрадисперсных частиц в заданном соотношении позволяет получать плакирующий слой плотной упаковки с количеством пор менее 0,5%. 3 ил., 1 табл., 1 пр.
Изобретение относится к способу получения защитного функционально-градиентного покрытия на поверхности металлических изделий, обладающего высокой износостойкостью в контактных средах, например парах трения гидромоторов или гидронасосов. Сначала на металлическую поверхность изделий методом сверхзвукового холодного газодинамического напыления наносят порошок чистого никеля фракцией 20-60 мкм. Затем для формирования упрочняющего подслоя на образовавшуюся поверхность наносят порошковую композицию, состоящую из механической смеси алюминия фракцией 20-60 мкм и никеля фракцией 20-60 мкм в соотношении 1:1. Дополнительно в упомянутую порошковую композицию вводят 10-30 мас. % крупнозернистого корунда фракцией 60-80 мкм. После чего формируют алюминиевое покрытие с последующим микродуговым оксидированием (МДО) и термообработкой. Обеспечивается керамическое функционально-градиентное покрытие на поверхности металлических изделий в широком диапазоне толщин от 100 мкм до 5 мм, обладающее низкой пористостью. 3 з.п. ф-лы, 2 пр.

Использование: для оценки износостойкости тонкослойных керамических покрытий с применением метода акустической эмиссии. Сущность изобретения заключается в том, что осуществляют трение между стальным контртелом и испытываемым тонкослойным керамическим покрытием, отличие заключается в том, что при помощи индентора на покрытии формируют две дорожки трения - экспериментально оцениваемая и калибровочная, при формировании дорожек трения фиксируют акустическую эмиссию, вычисляют коэффициент пропорциональности, соответствующий данному конкретному материалу покрытия, вычисляют массу изношенного материала экспериментальной дорожки трения, ее среднюю глубину и изношенный объем при отсутствии разрушения покрытия, определяют относительную износостойкость покрытия. Технический результат: обеспечение возможности определения изношенного микрообъема и интенсивности изнашивания тонкослойных керамических покрытий в паре трения на основе комплексной обработки сигналов акустической эмиссии.

Изобретение относится к способу получения композиционного материала для изготовления функциональных покрытий из сплава алюминия и углеродного нановолокна и может быть использовано в авиационной, космической, судостроительной и других областях промышленности. Способ получения композиционного покрытия на основе алюминия и углерода включает подачу порошка с использованием двух дозаторов в сверхзвуковой поток подогретого газа с образованием гетерофазного потока и нанесение порошковой композиции на поверхность изделия. В упомянутый сверхзвуковой поток из первого дозатора вводят порошок Al2O3 для обработки изделия до образования ювенильной поверхности, затем наносят последовательно методом холодного газодинамического напыления порошковую композицию. Для нанесения первого износостойкого слоя в упомянутый сверхзвуковой поток из второго дозатора вводят композиционный порошковый материал, содержащий углерод и алюминий, для нанесения второго связующего слоя – алюминиевый порошок ПА-4, для нанесения третьего упрочняющего слоя – композиционный порошковый материал, содержащий углерод и алюминий, для нанесения четвертого связующего слоя – алюминиевый порошок ПА-4 и для нанесения пятого износостойкого слоя – композиционный порошковый материал, содержащий углерод и алюминий. Содержание углерода в первом слое составляет 0,4-0,6 мас. %, Аl и неизбежные примеси остальное, содержание углерода в третьем слое составляет 0,5-1 мас. %, Аl и неизбежные примеси остальное, содержание углерода в пятом слое составляет 0,6-1,6 мас. %, Аl и неизбежные примеси остальное, в качестве углерода в композиционном порошковом материале используют углеродное нановолокно. Обеспечивается получение композиционного материала для износостойкого покрытия, имеющего более высокую твердость, составляющую более 1,9 ГПа, низкий коэффициент трения до 0,4, высокую устойчивость к разрушению во время эксплуатации при одновременном сохранении низкого износа, необходимой прочности и ударной вязкости. 4 з.п. ф-лы, 7 табл., 3 пр.

Изобретение относится к способу получения покрытий с интерметаллидной структурой из порошковых материалов с высокой адгезионной прочностью. Техническим результатом изобретения является получение интерметаллидного покрытия с регулируемой структурой. Осуществляют послойное нанесение компонентов методом ХГН путем напыления по меньшей мере двух слоев. Один слой состоит из одного металла интерметаллической композиции, а второй слой из - другого металла выбранной интерметаллидной композиции. За счет вариации скорости и шага сканирования толщина каждого из слоев формируется такой, что в любом поперечном сечении указанных двух слоев покрытия химический состав соответствует стехиометрическому составу создаваемого интерметаллического соединения. Затем производят локальное расплавление покрытия сканирующим лазерным лучом, за счет чего после затвердевания формируется интерметаллическое покрытие заданного химического состава. 2 з.п. ф-лы, 1 ил., 1 пр.
Изобретение относится к области нефтехимии, а именно к носителям катализаторов, которые могут быть использованы для процессов паровой конверсии. Описан носитель катализатора, включающий металлическую основу и нанесенную на него многослойную композицию, в которой по крайней мере один слой является пористым. Многослойная композиция состоит из трех слоев, при этом внутренний слой, улучшающий адгезию, содержит никель, промежуточный слой содержит интерметаллиды системы «никель-алюминий», внешний пористый слой содержит каталитически активные соединения на основе одного или нескольких элементов Периодической системы, а именно Ni, Се, La, Са, Al. Технический результат заключается в получении носителя, обладающего высокой прочностью сцепления слоев, высокой планарностью и незначительным допуском к толщине слоя, с величиной адгезии нанесенных слоев с металлической основой не менее 60 МПа и стабильностью структуры носителя до температуры 1000 °C. 2 з.п. ф-лы, 2 пр.
Изобретение относится к области материаловедения, в том числе к созданию защитных керамоматричных покрытий на поверхности стали, обладающих высокой коррозионной стойкостью в агрессивных средах при температурах контактного взаимодействия 400-600°С за счет изменения состава и структуры их поверхностных слоев. Изобретение также может использоваться в химической промышленности. Способ заключается в том, что на стальную поверхность методом сверхзвукового холодного газодинамического напыления наносится порошок чистого алюминия фракцией 20-60 мкм. В качестве рабочего газа используется воздух. На образовавшийся алюминиевый первый слой методом сверхзвукового холодного газодинамического напыления наносят композиционный порошок, состоящий на 20% из корунда фракцией 50-60 мкм и на 80% из порошка алюминия фракцией 20-60 мкм, армированного свыше 50% наноразмерными частицами корунда фракцией до 100 нм. В качестве рабочего газа используется воздух. При напылении образуются скопления нанокорунда, которые заполняют поры покрытия. Далее образовавшийся алюминиевый упрочненный второй слой, имеющий пористость не более 5% от объема, подвергается микродуговому оксидированию в силикатно-щелочном электролите следующего состава: силикат натрия - 9 г/л, гидроксид калия - 2 г/л, остальное - вода. Продолжительность микродугового оксидирования составляет 1-1,5 часа, образуется внешний керамический оксидный МДО-слой внутрь упрочненного алюминиевого второго слоя с наночастицами корунда с открытой пористостью не более 7%. Данный способ позволяет уменьшить количество операций при формировании керамоматричного покрытия. Поверхность полученного керамоматричного покрытия имеет микротвердость 15-20 ГПа, адгезия покрытия к металлической основе не менее 50 МПа. При взаимодействии поверхности с агрессивной средой при температурах 400-600°С внешний МДО-слой и упрочненный алюминиевый второй слой с наночастицами корунда обеспечивают защиту керамоматричного покрытия от разрушения и создает необходимые условия для формирования интерметаллидного слоя Al-Fe с пористостью не более 2% от объема на всю толщину первого алюминиевого подслоя, вследствие активно протекающей диффузии на границе «подложка-покрытие». При этом адгезия покрытия к стали ухудшается не более чем на 5%. Интерметаллидный первый слой Al-Fe защищает сталь от взаимодействия с агрессивной средой, в случае ее частичного проникновения в поры износостойкого внешнего и второго слоя керамоматричного покрытия. 4 з.п. ф-лы, 2 пр.
Изобретение может быть использовано для получения крупногабаритных многослойных материалов, используемых в атомной, нефтегазовой, химической отраслях промышленности, а также в судостроении. Для повышения прочности сцепления металлических плит из разнородных материалов применяют нанесение промежуточного слоя толщиной 30-40 мкм на поверхность неподвижной плиты методом холодного газодинамического напыления. Перед нанесением промежуточного слоя проводится предварительная подготовка поверхности плиты методом абразивной обработки. Состав промежуточного слоя выбирают в зависимости от материала соединяемых пластин из условия обеспечения взаимной диффузии металлов в месте контакта. В качестве металла свариваемых пластин используют Al, Zn, Сu, Ni, Ti, Co, Fe, Ag и сплавы на их основе. В качестве напыляемого металла используют Al, Zn, Сu, Ni, Ti, Co, Fe, Ag и сплавы на их основе, легированные редкоземельными металлами. Полученный многослойный материал с напыляемым слоем имеет сплошность соединения слоев, соответствующую 1 классу по ГОСТ 22727 и прочность соединения слоев 300-400 МПа, что примерно в 1,5 раза выше прочности биметаллов без напыляемого слоя. 5 з.п. ф-лы, 3 пр.
Изобретение относится к пайке и может быть использовано, в частности, для изготовления композиционного катода из тугоплавких материалов, используемого для вакуумного нанесения тонкопленочных покрытий различного функционального назначения в отраслях машиностроения, микроэлектроники, приборостроении, электротехнике
Изобретение относится к способу получения износостойкого композиционного наноструктурированного покрытия, обеспечивающего высокую твердость и износостойкость поверхности деталей и узлов пар трения, работающих в особо жестких условиях эксплуатации
Изобретение относится к порошковой металлургии, в частности к способам получения композитных порошковых наноматериалов с металлической матрицей, армированной оксидными наполнителями, применяемых для создания износо- и коррозионностойких беспористых покрытий
Изобретение относится к области металлургии, а именно к прецизионным сплавам, в частности к аморфным, износостойким наноструктурированным сплавам на основе никеля системы Ni-Cr-Mo-WC
Изобретение относится к порошковой металлургии, в частности к износо-коррозионно-стойким сплавам на основе алюминия для получения порошковых наноматериалов, используемых для получения покрытий методом сверхзвукового холодного газодинамического напыления, применяемых для создания износо- и коррозионно-стойких беспористых покрытий

Изобретение относится к способам нанесения электропроводящих наноструктурированных покрытий с высокой электропроводностью и износостойкостью

Изобретение относится к области получения наноструктурированных покрытий с функционально-градиентными свойствами, в частности к покрытиям, обеспечивающим высокую твердость и износостойкость поверхности деталей и узлов пар трения, работающих в особо жестких условиях эксплуатации

Изобретение относится к области прецизионных сплавов

 


Наверх