Патенты автора Рындя Сергей Михайлович (RU)

Изобретение относится к полупроводниковой технологии, а именно к процессам электрохимического формирования пористого кремния, перспективного структурированного материала. Техническим результатом изобретения является устранение недостатков традиционных электролитических способов, а именно применение в них дорогостоящей платины в качестве контрэлектрода, экологическая опасность, использование коррозионно-активных агентов и пожароопасных органических компонент, ограничение возможностей электрохимического формирования пористого кремния - только на монокристаллических образцах. Технический результат достигается путем разработки неэлектролитического способа формирования пористых слоев кремния. Заявленный способ формирования слоя пористого кремния на кристаллической подложке с использованием внутреннего источника тока в электролите состоит в том, что слои пористого кремния на поликристаллической подложке p-Si получают неэлектролитическим путем в отсутствие контрэлектрода в растворе 40% NH4HF2 с постоянной инжекцией озон-кислородной смеси с дозой озона не более 7,5 мг/л. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области ускорительной техники, в частности к системам подачи газа в сверхзвуковое сопло при формировании пучков ускоренных газовых кластерных ионов. Технический результат - расширение класса рабочих газов, в том числе слабо кластеризуемых, используемых в системах для формирования газовых кластерных ионных пучков. Способ предусматривает формирование газового кластерного ионного пучка в вакуумной камере при подаче рабочего газа под давлением от источника газа в сверхзвуковое сопло ускорителя газовых кластерных ионов, при этом формирование газового кластерного ионного пучка осуществляется путем импульсной подачи газа от источника, при значении давления стагнации, не превышающем 7 атм, и при длительности импульса тока кластерных ионов, на 1-2 порядка превышающей длительность подачи газа от источника. 4 ил., 1 табл.

Изобретение относится к способу финишной планаризации поверхности оптической стеклокерамики. Обработку поверхности оптической стеклокерамики проводят в две стадии. На первой стадии осуществляется обработка поверхности оптической стеклокерамики пучками ускоренных кластерных ионов аргона. Далее на второй стадии проводится обработка пучками ускоренных нейтральных атомов аргона. При этом ускоряющее напряжение на обеих стадиях обработки находится в диапазоне 10-30 кВ, время обработки на каждой из стадий устанавливается не более 15 минут, при давлении остаточных газов не более 4×10-2 Па. Технический результат – упрощение технологического процесса планаризации поверхности при одновременном снижении среднеквадратичной шероховатости поверхности оптической стеклокерамики на 30% относительно их исходного состояния. 2 табл., 2 ил.

Изобретение относится к технологии получения нанопроволок AlN для микроэлектроники и может быть использовано для улучшения рассеивания тепла гетероструктурами, для создания светильников, индикаторов и плоских экранов, работающих на матрице из нанопроволок и т.д. Проводят импульсное лазерное распыление керамической мишени AlN стехиометрического состава с помощью эксимерного лазера KrF с длиной волны излучения 248 нм. Обработку выполняют в вакууме при остаточном давлении 10-5 - 10-6 Па, длительности импульса 10-50 нс и частоте следования импульсов 15-45 Гц в диапазоне температур подложки 700-850°С. Технический результат изобретения заключается в упрощении технологического процесса синтеза нанопроволок AlN на полупроводниковой подложке методом импульсного лазерного осаждения. 4 ил.

Изобретение относится к полупроводниковым нитридным наногетероструктурам и может быть использовано для изготовления светодиодов видимого диапазона с длиной волны 460±5 нм. Указанный синий флип-чип светодиод на нитридных гетероструктурах содержит металлические электроды p-типа, нитридный слой p-типа, III-нитридную активную область, III-нитридный слой n-типа, подложку из карбида кремния с текстурированной полуполярной или неполярной поверхностью, выполненной в виде нанообразований, размеры которых и расстояние между которыми сравнимы с длиной волны излучения. 5 з.п. ф-лы, 1 ил.

Изобретение относится к твердотельной электронике, в частности к технологии изготовления высоковольтных карбидокремниевых полупроводниковых приборов на основе p-n-перехода с использованием ионной имплантации. Технический результат, достигаемый при реализации заявленного изобретения, заключается в получении высоковольтного карбидокремниевого диода на основе ионно-легированных p-n-структур с напряжением пробоя ~1200 В. В способе формирования высоковольтного карбидокремниевого диода на основе ионно-легированных p-n-структур на сильнолегированную подложку 6H-SiC наносят методом химического осаждения из газовой фазы слаболегированный эпитаксиальный слой толщиной 10÷15 мкм, после чего проводят ионное легирование этого слоя акцепторной примесью А1 или В с энергией 80÷100 кэВ и дозой 5000÷7000 мкКл/см2, что позволяет максимально увеличить ширину области пространственного заряда p-n-перехода (w~10 мкм), при которой в приповерхностном p-слое не возникает инверсии носителей заряда, при этом достигается величина напряжения пробоя p-n-перехода ~1200 В. 1 ил.

Изобретение относится к технологии микроэлектроники и может быть использовано для получения слоев карбида кремния при изготовлении микроэлектромеханических устройств, фотопреобразователей с широкозонным окном 3С-SiC, ИК-микроизлучателей. Способ получения тонких эпитаксиальных слоев β-SiC на кремнии монокристаллическом включает распыление керамической мишени SiC путем сканирования по ее поверхности лазерным лучом в условиях высокого вакуума без добавок газообразных реагентов на нагретую подложку. Распыление осуществляют лазером с длиной волны излучения λ=1,06 мкм и выходной энергией излучения 0,1÷0,3 Дж при остаточном давлении в ростовой камере 10-4-10-6 Па и при температуре подложки 950÷1000°C. Обеспечивается получение эпитаксиальных слоев карбида кремния кубической модификации (β-SiC) на подложках кремния монокристаллического (Si) кристаллографической ориентации (111) и (100). 4 ил.

Изобретение относится к способу получения тонких пленок карбида кремния методом вакуумной лазерной абляции и может быть использовано для получения тонкопленочных покрытий и активных слоев тонкопленочных приемников УФ-излучения в микроэлектронике

 


Наверх