Патенты автора Долбилов Геннадий Варламович (RU)

Изобретение относится к ускорительной технике и может быть использовано при разработке индукционных циклических ускорителей с практически постоянным радиусом орбиты и постоянным во времени магнитным полем. Индукционный, не резонансный способ ускорения решает задачу синхронизации в широком диапазоне скоростей ускоряемых частиц и ускоряющего электрического поля путем изменения частоты повторения индукционных импульсов. Магнитная система индукционного синхротрона не имеет принципиальных ограничений на снижение нижнего порога энергий ускоряемых частиц. Магнитная система индукционного синхротрона состоит из набора магнитных диполей и фокусирующих линз, которые расположены на дугообразных участках корпуса ускорителя, а обмотки диполей и линз соответственно соединены с генераторами питания, каждый диполь содержит две составляющие с прямой и обратной полярностью магнитного поля, образуя таким образом биполярную магнитную систему, а каждая фокусирующая линза содержит две разнополярные линзы с плоскими магнитными полюсами. Технический результат - расширение рабочего диапазона ускоряемых энергий и упрощение процесса наладки и запуска ускорителя. 3 ил.

Изобретение относится к ускорительной технике и может быть использовано при разработке циклических ускорителей с практически постоянным радиусом орбиты, например индукционных синхротронов с постоянным во времени магнитным полем. Способ формирования равновесных траекторий частиц в циклическом ускорителе с постоянным радиусом орбиты заключается в том, что для формирования орбит частиц и сохранения радиуса орбиты частиц постоянным при их ускорении производят отражение частиц полями магнитных диполей и формируют жесткую фокусировку частиц. Отражения частиц производят посредством полей разнополярных диполей, а для формирования жесткой фокусировки частиц используют поля линз с плоскими магнитными полюсами. Для реализации данного способа формирования равновесных траекторий могут быть использованы стандартные магнитные диполи, теплые или сверхпроводящие, которые широко применяются в технике ускорителей частиц. Возможно также использование постоянных магнитов (например, NdFeB или CmCo). Технический результат - повышение рабочего диапазона энергий. 2 ил.

Изобретение относится к ускорительной технике и может быть использовано для вывода частиц из циклических ускорителей. Устройство состоит из трех магнитных диполей, два из которых, входной и выходной, расположены под углом друг к другу, а третий диполь расположен параллельно входному диполю и имеет обратную полярность магнитного поля. Входной диполь и выходной диполи отклоняют частицы на угол θ=2(α+β), который не зависит от энергии ускоряемых частиц, что позволяет возвращать частицы на стационарную орбиту во всем диапазоне ускоряемых частиц (α и β - углы падения и отражения частиц во входном и выходном диполях). Такой режим работы устройства вывода имеет место, когда энергия частицы не превышает порогового значения. При достижении ускоряемой частицы порогового значения частица попадает в диполь с обратной полярностью и выводится из ускорителя. Технический результат – повышение эффективности вывода частиц из ускорителя. 2 ил.

Изобретение относится к способу вывода частиц из кольцевых ускорителей и в первую очередь из кольцевых ускорителей с постоянным магнитным полем и практически постоянным радиусом. Для вывода частиц используют отражение частиц полями постоянных магнитов, в котором угол отражения равен углу падения и не зависит от скорости (энергии и импульса) частиц, при этом глубина проникновения частиц в поле с индукцией Bz зависит от импульса (энергии) частиц и связана соотношением где: Р - полный импульс частиц, Pcosa - составляющая импульса вдоль оси у, Bz и Bz,cp - индукция и средняя индукция поля магнита, q - заряд частицы, уm - глубина проникновения частиц в поле магнита. При упругом отражении угол отражения всегда равен углу падения и не зависит от скорости (энергии) частиц, и глубина проникновения частиц в поле зависит от их энергии. Если глубина проникновения частиц в поле меньше поперечного размера диполя, частицы отражаются и попадают в другой такой же диполь и возвращаются на равновесную орбиту ускорителя. Когда, с увеличением энергии частиц, глубина их проникновения в поле диполя становится больше поперечного размера диполя, частицы проходят сквозь диполь и выводятся из ускорителя. Техническим результатом является возможность автоматического вывода заряженных частиц при условии достижения ими заданной энергии вывода. 1 ил.

Изобретение относится к ускорительной технике и может быть использовано в циклических ускорителях. Способ многооборотной инжекции заряженных частиц в циклический ускоритель заключается в том, что для ввода частиц на линейном участке орбиты ускорителя, частицы предварительно инжектируются в магнитные поля двух разнополярных инжекционных диполей. С помощью полей этих диполей частицы вводят на равновесную орбиту и ускоряют на равновесной орбите, а перед тем как вывести частицы на второй и последующие обороты, частицы отклоняют магнитными полями двух дополнительных разнополярных диполей, в которых ускоренные частицы, минуя устройство ввода пучка в систему, снова инжектируют в магнитные поля инжекционных разнополярных диполей, которые выводят частицы на равновесную орбиту ускорителя, где происходит их накопление. Технический результат – увеличение интенсивности и уменьшение радиального фазового объема накопленного пучка заряженных частиц в циклическом ускорителе. 1 з.п. ф-лы, 2 ил.

Изобретение относится к ускорительной технике, в частности к способам вывода частиц из кольцевых систем ускорителей и накопителей заряженных частиц, которые используют байпасные системы. Предлагаемый способ решает задачу уменьшения потерь частиц при медленном выводе с использованием байпасной системы пучка и уменьшения искажений импульсного магнитного поля экранами системы вывода пучка. Задача решается путем использования градиентных дипольных полей, которые обладают градиентным импульсом силы. Нарастающим магнитным полем градиентного диполя пучок отклоняется к системе вывода и дефокусируется для увеличения его радиального размера в области апертуры выводного устройства. При увеличении магнитного поля часть частиц пучка, которая попала в апертуру выводного дефлектора выводится из ускорителя, а оставшаяся часть фокусируется и снова вводится на равновесную орбиту. Величина магнитного поля увеличивается до тех пор, пока все частицы пучка не будут выведены из ускорителя. Технический результат – уменьшение искажений магнитного поля вокруг экрана и уменьшение потерь частиц пучка в стенке дефлектора. 1 ил.

Изобретение относится к области и к способу фокусировки пучков заряженных частиц. В заявленном способе формируют систему магнитных полей, поочередно отклоняют ими частицы к оси и от оси системы, осуществляя таким образом жесткую фокусировку частиц, отклонение частиц проводят полями диполей с разной полярностью магнитной индукции, результирующее действие которых приводит к отклонению частиц только в одном из взаимно перпендикулярных направлений. Для отклонения частиц в другом направлении используют повернутую на 90° систему. При этом возможно использование однородных полей диполей. Поля магнитных диполей формируют таким образом, что частицы, движущиеся по оси системы, приобретают в полях разной полярности равные по величине, но разные по знаку момента силы Р=±Fct (Fc - сила, действующая на частицу, t - время движения в диполе). В этом случае суммарный импульс силы, приобретенный частицей, будет равен нулю, Р=0. Для любой отклоненной от оси частицы суммарный момент импульса не равен нулю и всегда отклоняет частицу к оси фокусирующей системы. Техническим результатом является увеличение жесткости фокусировки. 1 з.п. ф-лы, 1 ил.

Изобретение относится к cпособу ускорения заряженных частиц. В заявленном способе инжектированные в ускоритель частицы ускоряются импульсами индукционного электрического поля, которые синхронизированы с импульсами тока ускоряемого пучка. Синхронизация импульсов осуществляется с помощью датчиков времени пролета пучка. Азимутальная устойчивость ускоряемых частиц обеспечивается формой вершины индукционных импульсов. Замкнутые орбиты частиц при их ускорении формируются посредством многократного отражения частиц от диполей. В результате многократного отражения инжектированные частицы, с предельно низкой энергией, движутся по хордам кольцевой орбиты ускоренных частиц. Величина отклонения траекторий инжектированных и ускоренных частиц зависит от числа отражающих диполей. Вертикальную дефокусировку частиц полями отклоняющих диполей компенсируют на входе и выходе отклоняющих пучок секций. На прямолинейных участках частицы фокусируют квадрупольными линзами и после ускорения выводят их. Техническим результатом является расширение диапазона энергий ускоряемых частиц путем существенного уменьшения нижнего порога энергий, связанного с потерей частиц с малой энергией, а также возможность отказаться от применения пред-ускорителей частиц и упрощение эксплуатации ускорителя. 3 ил.

Изобретение относится к ускорительной технике и может быть использовано в области физики частиц высоких энергий, промышленности, медицины и научных исследований. Технический результат - ускорение в постоянном магнитном поле с почти постоянным радиусом орбит во всем диапазоне ускорения, существенное снижение нижнего порога энергии инжекции, увеличение диапазона ускоряемых энергий и отношения Z/A частиц (где Ζ - зарядность, А - атомный номер), отсутствие пред-ускорителей, уменьшение стоимости создания и эксплуатации ускорителя. Ускоритель включает в себя: импульсную индукционную систему с датчиками времени пролета пучка для синхронизации ускоряющих импульсов с импульсами тока пучка; систему формирования замкнутых орбит ускоряемых частиц, которая состоит из отражающих пучок магнитных диполей и корректирующих устройств для компенсации дефокусируещего действия диполей в вертикальной плоскости; системы жесткой фокусировки на прямолинейных участках; системы ввода и вывода пучка; вакуумную систему. Корректирующие устройства расположены на входе и выходе каждой отклоняющей пучок секции и представляют собой короткую линзу. Магнитные диполи системы формирования орбит, отражая частицы пучка, создают замкнутые орбиты. При этом угол падения пучка на диполь равен углу отражения. Поскольку это равенство не зависит от характера распределения поля поперек продольной оси диполя, равенство углов падения и отражения сохраняется и в краевых полях диполей. Это обстоятельство снимает ограничения на нижний порог энергии инжекции. 1 з.п. ф-лы, 4 ил.

Изобретение относится к ускорительной технике и может быть использовано в области физики частиц высоких энергий, промышленности, медицины и научных исследований. Заявленный циклический ускоритель электронов включает в себя отклоняющие дипольные магниты, индукционную ускоряющую систему, системы ввода и вывода пучка, расположенные на прямолинейных участках. Для ускорения электронов в диапазоне энергий ~0,3-10 МэВ ускоритель включает в себя генератор возбуждения витков индукторов ускоряющей системы прямоугольной волной напряжения. Длительность ускоряющих импульсов волны равна не ½ длительности периода обращения электронов на орбите, которая составляет несколько наносекунд, а длительности полного цикла ускорения от энергии инжекции до заданной конечной энергии ~10-4-10-6 с. Для сохранения равновесного радиуса орбиты при ускорении и медленном выводе электронов ускоритель содержит генератор питания отклоняющих дипольных магнитов, обладающий свойством возбуждения трапецеидальной волны магнитной индукции. Ускоритель также содержит жесткофокусирующую систему в отклоняющих дипольных магнитах и прямолинейных участках. Техническим результатом является увеличение средней мощности ускоренного пучка электронов, уменьшение габаритов и веса ускорителя, упрощение ускоряющей системы и увеличение диапазона регулировки энергии ускоренных электронов. 4 ил.

Изобретение относится к ускорительной технике и может быть использовано при создании индукционных циклических ускорителей промышленного назначения, например, для модификации и производства новых материалов, стерилизации медицинских инструментов и пищевых продуктов, дезинфекции медицинских и других отходов, очистки дымовых газов промышленных предприятий от вредных SOx и NOx окислов. Предложенный способ заключается в том, что для получения заданной конечной энергии (≤10 МэВ) используется прямоугольная волна ускоряющего индукционного напряжения и треугольная волна ведущего магнитного поля, для сохранения радиуса равновесной орбиты постоянным в процессе ускорения выполняют специальные соотношения между амплитудно-временными характеристиками магнитной индукции на орбите и индуцированным ускоряющим напряжением. Для реализации жесткой фокусировки формируют магнитное поле на орбите с большим знакопеременным градиентом. Техническим результатом является увеличение средней мощности пучка ускоренных заряженных частиц, а также уменьшение габаритов и веса ускорителя циклического индукционного ускорителя электронов, упрощение системы питания индукционной ускоряющей системы, снижение стоимости ускорителя. 5 ил.

Изобретение относится к ускорительной технике и может быть использовано в области физики частиц высоких энергий, промышленности, медицины и научных исследований

Изобретение относится к ускорительной технике и может быть использовано в области физики частиц высоких энергий, промышленности, медицины и научных исследований

Изобретение относится к ускорительной технике и может быть использовано при создании индукционных циклических ускорителей ионов с регулируемой кинетической энергией в медицине и научных исследованиях

Изобретение относится к технике ускорителей для радиационных технологий с выводом электронов из корпуса ускорителя, которые могут быть использованы в новых плазменно-химических технологиях

Изобретение относится к ускорительной технике и может быть использовано при создании резонансных ускорителей промышленного назначения

Изобретение относится к ускорительной технике и может быть использовано при создании индукционных циклических ускорителей промышленного назначения

 


Наверх