Патенты автора Кулов Сослан Кубадиевич (RU)

Изобретение относится к оптической и электронной промышленности, в частности к производству растворимых оптических стекол жилы для изготовления мелкоструктурных микроканальных пластин (МКП). Стекло растворимой жилы для мелкоструктурных микроканальных пластин согласно изобретению содержит компоненты в следующем соотношении в мас. %: В2О3 50,9-52,9; ВаО 16,4-18,2; Al2O3 12,4-12,6; K2O 7,5-9,0; СаО 5,1-6,1; SiO2 2,8-3,6; MgO 1,2-1,8. Технический результат заключается в максимальном сохранении округлой формы канала МКП, увеличении вязкости стекла растворимой жилы МКП, снижении структурного шума за счет более округлой формы канала и значительном повышении порога сотовой структуры. 3 пр., 2 табл., 2 ил.

Изобретение относится к электронной промышленности, в частности к химической обработке поверхности микроканальных пластин (МКП), и может быть использовано в электронно-оптических преобразователях. Способ извлечения щелочных металлов из микроканальной пластины включает химическую обработку 8-12% раствором азотной кислоты, промывку в деионизованной воде с последующими обезвоживанием в изопропиловом спирте и суховоздушную сушку. Перед химической обработкой микроканальные пластины подвергают воздействию влажности от 90-98% при комнатной температуре, по крайней мере, в течение двух суток. Химическую обработку раствором азотной кислоты и обезвоживание после последней промывки осуществляют в течение 25-35 минут. Технический результат заключается в улучшении параметров сохраняемости и надежности, а также в увеличении срока хранения МКП. 1 з.п. ф-лы, 1 табл., 4 ил.

Изобретение относится к обработке стекловолоконных нитей спеканием, в частности к изготовлению микроканальных пластин с монолитным обрамлением, и может быть использовано в электронно-оптических преобразователях. Способ включает сборку многожильных световодов в блок и спекание при температуре 580-600°С в течение 0,5-1,0 ч при одновременном всестороннем обжатии блока с сообщением внешнего давления при нагревании цельностеклянного обрамления на основе свинцово-силикатного свинца, с последующим отжигом спеченного блока при температуре 475-485°С в течение 3,5-4,5 ч и охлаждением до 360-380°С со скоростью менее 0,5°С в минуту, а до температуры окружающей среды - в инерционном режиме. При этом спекание осуществляют одновременно в одной камере по крайней мере двух блоков при внешнем давлении (9-11)⋅105 Па. Техническим результатом является повышение процента выхода годной продукции, увеличение производительности и снижение брака по границам спая микроканальных сот. 1 табл.

Изобретение относится к области электронной техники, в частности к конструкции и технологии изготовления вакуумных фотоэлектронных приборов (ФЭП), содержащих микроканальные пластины (МКП) в шевронной сборке, таких как фотоэлектронные умножители (ФЭУ), позиционно-чувствительные детекторы (ПЧД) и электронно-оптические преобразователи (ЭОП). Технический результат - улучшение параметров - скорости счета темповых импульсов и отношения пик/долина в одноэлектронном распределении импульсов, повышение допустимого уровня световой загрузки, а также увеличение долговечности ФЭУ. Устройство включает корпус, фотокатод на стеклянной подложке, блок микроканальных пластин в шевронной сборке, газопоглотитель и коллектор, причем фотокатод на стеклянной подложке, боковой фокусирующий электрод, соединенный с фотокатодом, и анод в виде усеченного конуса с отверстием в центре его торцевой поверхности, соединенный со входом микроканальной пластины, в совокупности образуют иммерсионную линзу для фокусировки и сбора электронов на вход МКП, а газопоглотитель расположен в конусной части анода, при этом устройство снабжено стеклянным штенгелем для присоединения к откачной системе, причем электронное обезгаживание проводят перед отпайкой устройства от откачной системы и после отпайки. 2 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения отношения сигнал-шум с последующим расчетом фактора шума микроканальной пластины (МКП) в производстве МКП, в частности для использования в приборах ночного видения. Технический результат - возможность контроля шумовых параметров в процессе изготовления МКП на любой полосе частот, уменьшение погрешности измерения и сокращение продолжительности его процесса. Способ включает снятие токового сигнала с люминесцентного экрана с помощью фотоэлектронного умножителя и последующую обработку оцифрованного сигнала. Полученный с фотоэлектронного умножителя токовый сигнал преобразуют в напряжение с помощью нагрузки, по падению напряжения которой регистрируют мгновенные значения с помощью измерительной системы. Полученный аналоговый сигнал преобразуют в цифровой, а обработку оцифрованного сигнала на заданной полосе частот осуществляют в диапазоне от 0 до 25 кГц персональным компьютером с заданным программным обеспечением. В процессе измерения фактора шума определяют среднее значение сигнала и при его изменении на ±10% от среднего значения токового сигнала автоматически проводят повторные измерения. На нагрузке создают падение напряжения, прямо пропорциональное величине светового потока люминесцентного экрана, в течение 40-50 с. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области электронной техники, в частности к технологии изготовления вакуумных фотоэлектронных приборов (ФЭП), содержащих микроканальные пластины (МКП), такие как бипланарные и инверсионные электронно-оптические преобразователи (ЭОП), фотоэлектронные умножители (ФЭУ) и позиционно-чувствительные детекторы, и может быть использовано при производстве этих приборов. Технический результат - повышение производительности и эффективности обезгаживания МКП для улучшения параметров и повышения надежности вакуумного прибора. Способ включает облучение МКП входным электронным потоком при заданных напряжении и выходном токе. Обезгаживание осуществляют электронным потоком в пять этапов: первый этап проводят при входном токе 4·10-9-8·10-9 Α и выходном токе 0,05-,01 от тока проводимости МКП, второй этап обезгаживания осуществляют при напряжении на МКП 1000-1050 В при том же входном токе, на третьем этапе ступенчато снижают напряжение на МКП через каждые 50-100 В от 1000-1050 В до 650 - 600 В при постоянно поддерживаемом выходном токе 2,7-3,2 мкА, на четвертом этапе обезгаживание проводят при том же выходном токе и входном токе, соответствующем входному току предельного режима эксплуатации вакуумного прибора, на пятом этапе обезгаживание осуществляют при напряжении на МКП 1000-1050 В и выходном токе 10-12 мкА. 2 ил., 2 табл.

Изобретение относится к области измерительной техники и касается способа измерения фактора шума микроканальной пластины. Способ включает снятие сигнала со всей площади люминесцентного экрана, который осуществляется в процессе изготовления МКП, регистрацию сигнала каждого импульса с выхода МКП, его усиление и подачу на многоканальный амплитудный анализатор импульсов. Сигналы анализируют по амплитудам и определяют коэффициент вариации усиления микроканальной пластины, пропорциональный фактору шума. Технический результат заключается в повышении точности измерений и обеспечении возможности контроля фактора шума микроканальной пластины в процессе ее изготовления. 2 ил.

Изобретение относится к обработке стекловидных нитей спеканием, в частности к изготовлению блоков микроканальных пластин, и может быть использовано в электронно-оптических преобразователях
Изобретение относится к оптико-электронному приборостроению, в частности к технологии изготовления микроканальных пластин (МКП), и может быть использовано в электронно-оптических преобразователях

 


Наверх