Патенты автора Стратилатов Николай Ремирович (RU)

Изобретение относится к области космической техники, а более конкретно к дистанционному зондированию Земли. Ракетно-космическая система (РКС) высокодетального дистанционного зондирования Земли в видимом и/или инфракрасном диапазоне наблюдения включает ракету-носитель для доставки на орбиту выведения космических аппаратов (КА), имеющих плоскость крепления к РН, перпендикулярную продольной оси КА, и размещенных в системе крепления и отделения от РН. КА имеют в своем составе оптико-электронную аппаратуру наблюдения, корректирующую двигательную установку и средства разворота КА относительно его центра инерции. Система крепления и отделения выполнена в виде адаптера. На адаптере размещены несколько устройств отделения с установленными на них КА, продольные оси которых параллельны продольной оси РН. На адаптере между КА закреплены стойки, связанные с платформой, на которой зафиксировано устройство отделения КА. КА снабжены запасом топлива, обеспечивающим перевод КА после отделения от РН с орбиты выведения на рабочую орбиту с минимальной высотой Н. Максимальный поперечный размер КА не превышает 0,6 диаметра D зоны полезного груза РН. Максимальная высота КА не превышает D, размер апертуры оптико-электронной аппаратуры d может находиться в пределах от 0,11 D до 0,25 D. 4 ил.

Изобретение относится к области космических телескопов (КТ) и может быть использовано при создании различных сетчатых конструкций, к которым предъявляются высокие требования по минимальной массе, прочности, жесткости и стабильности геометрических размеров от действия температур. Заявлен сетчатый композитный корпус, который состоит из кольцевых и спиральных ребер, соединенных между собой в узлах пересечения, при этом кольцевые ребра равномерно распределены по высоте сетчатого корпуса КТ и расположены симметрично относительно точек пересечения спиральных ребер. Причем этом кольцевые ребра выполнены из материала с большим температурным коэффициентом линейного расширения. Технический результат - обеспечение стабильности размера сетчатого композитного корпуса КТ по высоте при действии эксплуатационных температур с целью сохранения его фокусировки при минимальной массе и максимальной прочности и жесткости. 4 ил.

Изобретение относится к трансформируемым космическим отсекам (ТКО) обитаемых модулей. ТКО включает в себя корпус, выполненный из раздвижных полых элементов (РПЭ) с устройствами фиксации положения этих элементов друг в друге, по меньшей мере один узел стыковки с другим объектом и трансформируемую надувную оболочку (ТНО), противоположные стороны которой закреплены на РПЭ. Внутренняя полость ТНО соединена посредством трубопроводов с источником сжатого газа, размещенного внутри и/или снаружи ТКО. РПЭ снабжены по меньшей мере одним направляющим устройством их взаимного перемещения и снабжены устройством гашения скорости перемещения раздвижных полых элементов, которое закреплено на одном из торцов РПЭ между внешней поверхностью одного РПЭ и внутренней поверхностью другого РПЭ. Техническим результатом изобретения является увеличение внутреннего рабочего пространства в рабочей конфигурации ТКО, снижение нагрузок при раскрытии, повышение надежности. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области космических телескопов (КТ) и может быть использовано для различных ферменных и корпусных конструкций, к которым предъявляются высокие требования по геометрической стабильности размеров от действия температур. Задачей настоящего изобретения является устранение указанных недостатков, то есть снижение веса, упрощение технологии изготовления, уменьшение стоимости изготовления с обеспечением стабильности продольных и поперечных линейных размеров фермы силовой КТ в неравномерном поле температур без увеличения дефокусировки КТ. Задача решается тем, что ферма силовая КТ состоит из продольных, поперечных и диагональных цилиндрических размеростабильных при действии температур стержней, соединенных между собой в узлах пересечения, при этом продольные, поперечные и диагональные стержни выполнены составными, соединенными между собой торовой эллиптической оболочкой по большей оси, при этом торовая эллиптическая оболочка заполнена термометрической жидкостью, причем геометрические размеры каждого из составных цилиндрических стержней, торовой эллиптической оболочки, характеристики применяемых материалов и физические свойства термометрической жидкости связаны соотношением: L = η 4,26 ⋅ b ( β − 3 α 1 ) ( 0,06 a 4 + R 1 2 ⋅ δ 1 2 ) α 2 ( 1 − μ 2 ) R 1 2 ⋅ δ 1 2 где L - суммарная длина любого из составных стержней; b, a - малая и большая полуоси сечения торовой эллиптической оболочки; R1 - радиус срединной поверхности торовой эллиптической оболочки; δ1 - толщина торовой эллиптической оболочки; α1, α2 - коэффициенты линейного расширения материала торовой эллиптической оболочки и стержня соответственно; β - коэффициент объемного расширения термометрической жидкости; µ - коэффициент Пуассона материала торовой эллиптической оболочки; η - коэффициент, учитывающий упругость торовой оболочки в местах ее соединения с цилиндрическими стержнями. 5 ил.

Изобретение относится к высокоточному бортовому оборудованию космических аппаратов, в частности к космическим телескопам

Изобретение относится к области оптического приборостроения и может быть использовано при создании различных ферменных и рамных конструкций, к которым предъявляются высокие требования по жесткости и геометрической стабильности размеров от действия температур

 


Наверх