Патенты автора Комаров Михаил Юрьевич (RU)

Изобретение относится к приборам наведения минометных систем и может быть реализовано для 82-мм миномета 2Б14-1 в качестве электронно-цифрового прицела. Электронно-цифровой прицел для 82-мм миномета 2Б14-1 состоит из корпуса, ЖК-дисплея, выключателя подсветки дисплея, микроконтроллера на базе ArduinoNano с программой для вычисления положения ствола миномета, микроэлектромеханической системы на базе микросхемы MPU6050, подтягивающих резисторов I2C, стабилизатора напряжения на 5 вольт, блока, состоящего из двух аккумуляторов 18650 на 3,7 вольт, выключателя прибора, при этом корпус включает в себя специальное крепление в виде скобы с затяжным винтом для фиксации прицела в обойме миномета. При включении электронно-цифрового прицела и подаче напряжения на гироскоп и акселерометр получаем информацию проекции ускорения в трех плоскостях и силы тяжести в трех плоскостях. Полученные данные поступают на микроконтроллер ArduinoNANO, в котором согласно написанной программе производятся математические вычисления. Данные, полученные с помощью математических вычислений, микроконтроллер передает на ЖК-дисплей. Устройство обеспечивает отображение информации по положению трубы миномета в трех плоскостях как в ночное, так и в дневное время. Применение электронно-цифрового прицела ускоряет процесс наведения миномета и повышает точность наводки. 1 ил.

Предлагается способ управления рассеиванием реактивных снарядов с помощью погона с устройством электромагнитной фиксации положения вращающейся части боевой машины реактивной системы залпового огня, при котором дополнительно стопорится вращающаяся часть при помощи силовых магнитов. Устройство для магнитного стопорения содержит погон, жестко соединенный с кольцом рамы в сборе. Погон включает внутреннее кольцо погона - неподвижную часть погона с зубчатым венцом, связанную с коренной шестерней поворотного механизма, и внешнее кольцо, образующие шариковый подшипник. Электромагнит установлен в защитном корпусе с внутренней стороны основания над неподвижным кольцом погона. Технический результат - исключение влияния «мертвого» хода (люфта) в системе «внутреннее кольцо погона - коренная шестерня», обеспечение стабилизации устойчивого положения пакета пусковых направляющих в горизонтальной плоскости, повышение точности стрельбы. 2 н.п. ф-лы, 3 ил.

Группа изобретений относится к области авиадвигателестроения. Ротор ТВД двигателя содержит рабочее колесо ТВД, включающее диск и лопаточный венец с системой рабочих лопаток. Лопатка ТВД включает каждая хвостовик и перо с выпукло-вогнутым профилем стенок. Диск рабочего колеса выполнен в виде моноэлемента, включающего ступицу и полотно с ободом. Вал РВД образован сочетанием выполненных за одно целое с диском консольных кольцевых элементов для соединения с валом КВД и носком ТВД. Ротор ТВД включает напорный диск, образующий совместно с диском ротора кольцевой канал для подвода потока охлаждающего воздуха из аппарата закрутки воздуха к тракту воздушного охлаждения лопаток ТВД. В ободе диска выполнен диффузорный канал тракта, продолженный в замке, ножке и полке хвостовика лопатки ротора ТВД с выходом в охлаждаемую полость лопатки. Раздаточный коллектор распределения охлаждающего воздуха в полости лопатки сообщен с каналом циклонного охлаждения лопатки. Для чего циклонный канал снабжен двумя рядами отверстий - входным рядом отверстий в разделительной стенке и выходным рядом отверстия в спинке лопатки. Большая часть пера лопатки снабжена вихревой матрицей, дополненной на выходе из полости пера турбулизатором. Аппарат закрутки воздуха наделен системой конфузорных цилиндроконических сопел. Изобретение направлено на повышение эффективности охлаждения теплонапряженных элементов ТВД, надежности и ресурса ТВД и двигателя в целом. 3 н. и 6 з.п. ф-лы, 8 ил.

Группа изобретений относится к области авиадвигателестроения. Лопатка рабочего колеса ротора ТНД включает хвостовик и перо с выпукло-вогнутым профилем. Полость лопатки выполнена на полную высоту пера лопатки Полость пера в средней наиболее теплонапряженной части, составляющей не менее трети высоты ΔНр.л. лопатки, наделена совокупностью стержней, наделенных функцией высокотеплопроводной перемычки между стенками пера лопатки. Стержни выполнены за одно целое с оболочкой пера лопатки со смещением в смежных поперечных рядах в шахматном порядке не меньше чем на полшага, приводящем к образованию в решетке перекрестных диагональных рядов. В способ охлаждения лопатки рабочего колеса ротора ТНД лопатку охлаждают воздухом, который подают через напорное кольцо ротора ТНД. В полость лопатки охлаждающий воздух поступает через канал в хвостовике лопатки, заполняет полость лопатки, целенаправленно охлаждая наиболее теплонапряженные участки лопатки, с выходом нагретого воздуха не менее чем через два отверстия в периферийном торце пера в проточную часть турбины. Полость лопатки имеет проходную площадь ∑Fвх.к.л. сечения у входа в полость пера, составляющую не менее четверти от проходной площади ∑Fвых.к.л. сечения канала тракта в периферийном торце лопатки на выходе из полости пера. Стержни создают в потоке охлаждающего воздуха уменьшение проходного сечения и увеличение теплосъема с пера лопатки в поперечных рядах пропорционально коэффициенту удельного аэродинамического затенения повторяемой ячейки решетки К1уд.з.≤0,40. В диагональных рядах - пропорционально коэффициенту К2уд.з.≤0,35. Удельный коэффициент К3уд.ст. отношения площади Fст. огражденности теплосъемной поверхностью стержня к единице его объема Vст. составляет К3уд.ст.=≥0,86×103 [м2/м3]. Изобретение направлено на повышение эффективности охлаждения лопаток ротора ТНД. 2 н.п. ф-лы, 1 илл.

Группа изобретений относится к области авиадвигателестроения. Сопловый аппарат ТНД двигателя содержит сопловые блоки, смонтированные между наружным и внутренним силовыми кольцами, соединенными полыми силовыми спицами. Каждый из сопловых блоков собран из трех жестко соединенных лопаток, выполненных за одно целое с малой и большой полками. Силовые спицы пропущены через силовые кольца и полости каждой крайней лопатки блока СВ. Через полость средней лопатки каждого блока пропущена трубка транзитного тракта воздушного охлаждения ротора ТНД. Наружное кольцо СА выполнено полым, составным из кольцевых элементов с образованием входного коллектора тракта воздушного охлаждения СА. Фронтальный кольцевой элемент наделен фланцами для разъемного соединения с СА ТВД и корпусом КС, а тыльный - для разъемного соединения с корпусом опоры ТНД. Наружное кольцо снабжено не менее чем двумя отверстиями для пропуска охлаждающего воздуха из ВВТ во входной коллектор и не менее чем одиннадцатью отверстиями для пропуска воздуха из коллектора в полость сопловых лопаток. Цилиндрические элементы наружного и внутреннего колец снабжены проемами для пропуска силовых спиц и трубок транзитного тракта воздушного охлаждения ротора ТНД. Внутреннее кольцо СА совместно с фронтальной конической диафрагмой, выполненной за одно целое с корпусом подшипника опоры ТВД и тыльной конической диафрагмой-крышкой, образует промежуточный коллектор транзитного тракта воздушного охлаждения ротора ТНД. Внутреннее кольцо СА снабжено кольцевыми уплотнениями с примыканием к торцам малой полки блоков с возможностью возвратных радиальных смещений для компенсации разницы радиальных тепловых деформаций элементов СА. Лопатки установлены в сопловом блоке под углом навстречу потоку рабочего тела и имеют парусность. Лопатка выполнена с угловой закруткой профиля на большей части высоты лопатки и с увеличением высоты выходной кромки относительно входной. Лопатка выполнена с оребрением внутренней поверхности входной кромки и стенок для опирания дефлектора с образованием стабилизированной высоты канала тракта воздушного охлаждения лопатки между ее стенками и дефлектором. Технический результат состоит в повышении эффективности работы и ресурса соплового аппарата ТНД и двигателя в целом. 5 н. и 4 з.п. ф-лы, 9 ил.

Группа изобретений относится к области авиадвигателестроения. Сопловый аппарат ТНД включает сопловый венец, образованный из сопловых блоков, собранный каждый не менее чем из трех сопловых лопаток, выполненных за одно целое с малой и большой. Сопловые блоки смонтированы между наружным и внутренним силовыми кольцами, соединенными полыми силовыми спицами, пропущенными через крайние лопатки. Через среднюю лопатку каждого блока пропущена транзитная трубка. Сопловая лопатка наделена дефлектором, размещенным в передней части полости. Стенки лопатки оснащены внутри оребрением с образованием тракта воздушного охлаждения лопатки - системой подковообразных радиационно-конвекторных ребер, пролонгированных в головную часть спинки и корыта, и системой ориентированных по потоку продолговатых ребер, на которые свободно опирают стенки дефлектора с обеспечением требуемой высоты канала тракта. В стенках дефлектора по высоте лопатки выполнено не менее одного ряда фронтальных и две упорядоченных системы боковых выходных отверстий в стенках дефлектора. В способе охлаждения соплового аппарата охлаждающий воздух подают из ВВТ во входной коллектор, образованный полым корпусом наружного кольца СА. Из входного коллектора не менее половины потока воздуха через транзитные трубки поступает в промежуточный коллектор транзитного тракта воздушного охлаждения ротора ТНД и ТВД. Не менее трети потока воздуха через выходные отверстия пропускают на охлаждение большой полки и лопаток соплового блока. Охлаждающий поток воздуха поступает в дефлектор. Через фронтальные отверстия воздух поступает в головной ряд каналов у входной кромки лопатки с разделением тракта воздушного охлаждения лопатки на два внутренних канала между дефлектором и стенками лопатки. Протекая по внутренним каналам охлаждающий поток получает по ходу подпитку более холодным воздухом через выходные отверстия в боковых стенках дефлектора. Затем воздух последовательно поступает в вихревую матрицу и турбулизатор, через который нагретый теплосъемом воздух направляют в общий поток рабочего тела в проточной части ТНД. Технический результат состоит в повышении эффективности охлаждения лопаток сопловых аппаратов, блоков и ротора ТНД. 4 н. и 3 з.п. ф-лы, 6 ил.

Способ охлаждения соплового аппарата турбины высокого давления осуществляют путем охлаждения наиболее теплонапряженные элементы в лопатках и полках сопловых блоков соплового аппарата двумя потоками воздуха - вторичного потока воздуха камеры сгорания и воздухом от воздуховоздушного теплообменника. Выходящие в проточную часть соплового аппарата поверхности полок блоков омывают настильными струями охлаждающего воздуха камеры сгорания, который поступает из большого и малого воздухозаборных колец. Внутрь большой полки блока охлаждающий воздух поступает через наружное кольцо соплового аппарата. Одной частью поток воздуха проникает через группы отверстий экрана в подэкранную полость и охлаждает днище большой полки. Другой частью поток воздуха из надэкранной полости полки поступает в переднюю полость лопатки, заполняет объем диагонально усеченного дефлектора, и выходя из дефлектора, охлаждает изнутри входную кромку пера, наделенную семью рядами отверстий, разнонаклоненными к потоку рабочего тела. Дефлектор диагонально разделяет спинкой переднюю полость для встречного охлаждения воздухом стенок диагональных частей полости. Съем избыточной теплоты с передней части спинки и корыта пера лопатки производят встречным первому потоком воздуха в переднюю полость, поступающим через щелевое отверстие в малой полке. Спинка и корыто пера лопатки в передней полости наделены двумя и четырьмя рядами отверстий. Поток охлаждающего воздуха от воздуховоздушного теплообменника через наружное кольцо соплового аппарата поступает в заднюю полость лопатки с образованием разветвленного воздушного тракта. Задняя полость лопатки снабжена дефлектором, наделенным перфорационными отверстиями до вихревой матрицы и предназначенным для охлаждения меньшей частью потока задней части лопатки и большей частью потока охлаждения ротора турбины высокого давления. Изобретение направлено на повышение эффективности охлаждения теплонапряженных элементов соплового аппарата турбины высокого давления. 4 н. и 5 з.п. ф-лы, 5 ил.

Тракт воздушного охлаждения сопловой лопатки выполнен трехканальным. Сопловая лопатка выполнена полой, с аэродинамическим профилем и наделена радиальной перегородкой, разделяющей внутренний объем пера на переднюю и заднюю полости, снабженные дефлекторами. Входной участок первого канала тракта включает полость большой полки, сообщенную с передней полостью и входной кромкой каждой лопатки блока для съема избыточной теплоты пера лопатки. Входной участок второго канала тракта сообщен через наружное кольцо с задней полостью лопатки с выходом нагретого теплосъемом воздуха в проточную часть ТВД. Входной участок третьего канала тракта охлаждения лопатки выполнен в виде общей щели в стенке малой полки блока, сообщенной с передней полостью каждой лопатки блока для съема избытков теплоты с передней части стенок спинки и корыта пера лопатки. Дефлектор передней полости выполнен в виде пластинки, открытой к входной кромке, наделенной семью рядами отверстий с осями, разнонаклоненными к потоку рабочего тела, и диагонально разделяет спинкой переднюю полость для встречного охлаждения стенок диагональных частей полости воздухом из первого и третьего каналов тракта. Спинка и корыто в передней полости наделены двумя и четырьмя рядами отверстий. Задняя полость лопатки снабжена дефлектором, наделенным перфорационными отверстиями до вихревой матрицы и предназначенным для охлаждения меньшей частью потока задней части лопатки и большей частью потока охлаждения ротора ТВД. Изобретение направлено на повышение эффективности охлаждения лопаток и ресурса соплового аппарата ТВД. 3 н. и 1 з.п. ф-лы, 2 ил.

Группа изобретений относится к области авиадвигателестроения. Ротор ТНД двигателя содержит вал РНД с цапфой и рабочее колесо ТНД, включающее диск и лопаточный венец с системой рабочих лопаток. Диск рабочего колеса снабжен аппаратом подачи воздуха на охлаждение лопаток, содержащим напорное кольцо с воздухозаборной крыльчаткой. С тыльной стороны ступица диска выполнена за одно целое с консольным кольцевым элементом, выполненным с полифункциональным аэропрозрачным фланцем. Указанный фланец наделен отверстиями под крепежные элементы для разъемного соединения с цапфой, размещенными через одно с каналами тракта воздушного охлаждения ротора ТНД. С фронтальной стороны ступица диска наделена фланцем для разъемного соединения с кольцевым элементом ротора, огибающим ступицу диска и создающим совместно со ступицей пролонгированный канал тракта охлаждения ротора ТНД. Лопатка рабочего колеса ротора ТНД включает хвостовик и перо с выпукло-вогнутым профилем. Полость лопатки выполнена на полную длину пера лопатки и открыта на проток потока воздуха. Полость пера в средней наиболее теплонапряженной части наделена регулярной совокупностью стержней, наделенных функцией высокопроводной перемычки между стенками пера лопатки. Технический результат состоит в повышении эффективности охлаждения теплонапряженных элементов ТНД, надежности и ресурса ТНД и двигателя в целом. 5 н. и 3 з.п. ф-лы, 7 ил.

Способ охлаждения ротора турбины высокого давления газотурбинного двигателя осуществляют путем того, что ротор охлаждают вторичным потоком воздуха из камеры сгорания газогенератора двигателя, имеющим температуру более низкую, чем температура первичного потока рабочего тела из жаровой трубы камеры сгорания. Поток воздуха на входе в тракт воздушного охлаждения ротора турбины высокого давления подают через совмещенный с указанным трактом входной узел тракта воздушного охлаждения соплового аппарата в узел аппарата закрутки воздуха, включающий две перекрестно ориентированные кольцевые конические полости и аппарат закрутки воздуха. На выходе из второй полости охлаждающий воздух попадает в аппарат закрутки и через систему конфузорных цилиндроконических сопел, отклоненных в направлении к выходу из двигателя и в сторону вращения рабочего колеса турбины высокого давления, поступает в кольцевой канал, образованный смежными стенками диска рабочего колеса турбины высокого давления и напорного диска. Далее под напором воздух направляют в систему диффузорных каналов в ободе диска, из которых воздух поступает в канал в хвостовике лопаток, попадая в раздаточный коллектор в полости лопатки. В коллекторе охлаждающий воздух трансформируют в два потока. Фронтальную часть потока направляют через радиально ориентированный ряд отверстий в разделительной стенке в канал циклонного охлаждения входной кромки пера, охлаждая ее изнутри, и через другой ряд отверстий в спинке пера лопатки охлаждающий воздух выводят из полости и выполняют настильное охлаждение снаружи спинки пера лопатки. Тыльная большая часть потока из раздаточного коллектора поступает в вихревую матрицу, дополненную турбулизатором, охлаждая заднюю часть пера лопатки, и через щель в выходной кромке пера отработанный воздух выходит в поток рабочего тела проточной части турбины. Изобретение направлено на повышение эффективности охлаждения теплонапряженных элементов турбины высокого давления, надежности и ресурса турбины высокого давления и двигателя в целом. 4 н. и 3 з.п. ф-лы, 5 ил.

Группа изобретений относится к авиадвигателестроению, а именно к конструкциям сопловых аппаратов ТВД и трактам воздушного охлаждения сопловых лопаток авиационных газотурбинных двигателей ГПА. Сопловый аппарат включает сопловый венец. Сопловый венец выполнен из 14 сопловых блоков. Каждый блок содержит три лопатки, выполненных за одно целое с большой и малой полками и наделенных каждая радиально ориентированной перегородкой, разделяющей внутренний объем пера лопатки на переднюю и заднюю полости. Полости снабжены дефлекторами с образованием поликанального тракта воздушного охлаждения теплонапряженных элементов соплового блока. В состав СА входят наружное и внутреннее кольца, охватывающие полки блоков, а также большое и малое воздухозаборные кольца, примыкающие к кольцам на входе. В состав СА входит аппарат закрутки воздуха из вторичного потока камеры сгорания, подаваемого на охлаждение теплонапряженных элементов СА и далее через СА и аппарат закрутки на охлаждение ротора ТВД. Сопловая лопатка выполнена с выпуклой спинкой и вогнутым корытом, соединенными входной и выходной охлаждаемыми кромками. Хорда профиля в корневом сечении расположена под углом βх.к. к фронтальной плоскости βх.к.≥39°. Лопатки установлены в сопловом блоке с осевым навалом под углом ωо.н.=(3,28÷4,83)°, а также с окружным навалом под углом ωн.х.в.=(7,98÷11,75)°. При этом лопатка имеет парусность, нарастающую по высоте лопатки с градиентом Gп.л.=(0,19÷0,28). Стенка корыта лопатки выполнена на (2-5)% тоньше стенки спинки. Обе стенки выполнены с убыванием толщины в поперечном сечении от входной до выходной кромки не менее чем в 3,5 раза. В передней полости стенки лопатки наделены перфорационными отверстиями, сгруппированными в ряды, для выхода охлаждающего воздуха в общий поток рабочего тела. Технический результат группы изобретений состоит в повышении работы и ресурса соплового аппарата и ТВД в целом, технологической простоты изготовления без увеличения материало- и энергоемкости. 5 н. и 4 з.п. ф-лы, 11 ил.

Охлаждаемая турбина авиационного газотурбинного двигателя содержит рабочее колесо с установленными на нем рабочими лопатками с двумя контурами охлаждения, последовательно соединенные с воздушными каналами в рабочем колесе, с независимыми кольцевыми диффузорными каналами, сопловые лопатки и теплообменник. Кольцевые диффузорные каналы образованы на поверхности рабочего колеса, соединены с сопловыми аппаратами закрутки и транзитными воздуховодами на их входе. Каждая из сопловых лопаток выполнена в виде конструктивного элемента, ограниченного верхней и нижней полками, и пространства между ними, ограниченного вогнутой и выпуклой стенками пера сопловой лопатки, в виде расположенных вдоль ее оси раздаточного коллектора входной кромки и раздаточной полости. Раздаточный коллектор входной кромки соединен на входе с воздушной полостью камеры сгорания, а на выходе через перфорационные отверстия во входной кромке сопловой лопатки - с проточной частью турбины. Теплообменник соединен на входе с воздушной полостью камеры сгорания, а на выходе последовательно сообщен с воздушным коллектором и раздаточной полостью. Охлаждающая турбина снабжена раздаточным коллектором для охлаждающего воздуха, охлаждающим дефлектором и двумя транзитными дефлекторами, установленными в раздаточной полости вдоль ее оси с зазором относительно друг друга и с зазором между вогнутой и выпуклой стенками пера сопловой лопатки с образованием вдоль стенок охлаждающих каналов. Охлаждающий дефлектор выполнен с перфорационными отверстиями на двух его противоположных стенках, установлен в раздаточной полости на стенке раздаточного коллектора входной кромки и направлен стенками с перфорационными отверстиями в направлении вогнутой и выпуклой стенок пера сопловой лопатки. В верхней и нижней полках сопловой лопатки выполнены воздуховоды, соединенные на выходе с проточной частью турбины. Раздаточный коллектор для охлаждающего воздуха соединен с источником воздуха, с входом воздуховода верхней полки и с входом охлаждающего дефлектора. Вход воздуховода в нижней полке соединен с выходом охлаждающего дефлектора. Воздушный коллектор соединен с входом транзитных дефлекторов, а раздаточная полость соединена с проточной частью турбины. Изобретение позволяет повысить эффективность охлаждения турбины, а также повысить ее экономичность. 6 з.п. ф-лы, 5 ил. .

Охлаждаемая турбина содержит сопловые лопатки, теплообменник. Каждая из сопловых лопаток выполнена в виде конструктивного элемента, ограниченного верхней и нижней полками, и пространства между ними, ограниченного вогнутой и выпуклой стенками пера лопатки, в виде расположенных вдоль ее оси раздаточного коллектора входной кромки и раздаточной полости с транзитным дефлектором. Транзитный дефлектор образует вдоль внутренних поверхностей стенок пера охлаждающие каналы, сообщенные с проточной частью турбины. Раздаточный коллектор входной кромки соединен на входе с воздушной полостью камеры сгорания, а на выходе через перфорационные отверстия во входной кромке лопатки с проточной частью турбины. Теплообменник соединен на входе с воздушной полостью камеры сгорания, а на выходе последовательно сообщен с воздушным коллектором, транзитным дефлектором раздаточной полости, транзитным воздуховодом, сопловым аппаратом закрутки, каналами охлаждения рабочего колеса и рабочей лопатки турбины. Охлаждаемая турбина снабжена охлаждающим дефлектором, выполненным с перфорационными отверстиями на двух его противоположных стенках. Охлаждающий дефлектор установлен в раздаточной полости на стенке раздаточного коллектора входной кромки с зазором относительно транзитного дефлектора и с зазором между вогнутой и выпуклой стенками пера лопатки и стенками охлаждающего дефлектора с перфорационными отверстиями. В верхней и нижней полках лопатки выполнены воздуховоды, соединенные на выходе с проточной частью турбины. Вход воздуховода верхней полки и вход охлаждающего дефлектора соединены с воздушным коллектором. Вход воздуховода в нижней полке соединен с выходом охлаждающего дефлектора. Изобретение направлено на повышение эффективности и экономичности турбины. 4 з.п. ф-лы, 5 ил.

Охлаждаемая турбина содержит сопловые лопатки, каждая из которых выполнена в виде конструктивного элемента, ограниченного верхней и нижней полками, и пространства между ними, ограниченного вогнутой и выпуклой стенками пера лопатки, в виде расположенных вдоль ее оси раздаточного коллектора входной кромки и раздаточной полости с транзитным дефлектором, образующим вдоль внутренних поверхностей стенок пера охлаждающие каналы, сообщенные с проточной частью турбины, теплообменник. Раздаточный коллектор входной кромки соединен на входе с воздушной полостью камеры сгорания, а на выходе через перфорационные отверстия во входной кромке лопатки с проточной частью турбины. Теплообменник соединен на входе с воздушной полостью камеры сгорания, а на выходе последовательно сообщен с транзитным дефлектором раздаточной полости, с транзитным воздуховодом, сопловым аппаратом закрутки, каналами охлаждения рабочего колеса и рабочей лопатки турбины. Охлаждаемая турбина снабжена раздаточным коллектором для охлаждающего воздуха и охлаждающим дефлектором, выполненным с перфорационными отверстиями на двух его противоположных стенках. Охлаждающий дефлектор установлен в раздаточной полости на стенке раздаточного коллектора входной кромки с зазором относительно транзитного дефлектора и с зазором между вогнутой и выпуклой стенками пера лопатки и стенками охлаждающего дефлектора с перфорационными отверстиями. В верхней и нижней полках лопатки выполнены воздуховоды, соединенные на выходе с проточной частью турбины. Раздаточный коллектор для охлаждающего воздуха соединен с источником воздуха, с входом воздуховода верхней полки и с входом охлаждающего дефлектора. Вход воздуховода в нижней полке соединен с выходом охлаждающего дефлектора. Изобретение позволяет повысить эффективность и экономичность турбины. 6 з.п. ф-лы, 5 ил.

Охлаждаемая турбина содержит рабочее колесо с установленными на нем рабочими лопатками с двумя контурами охлаждения, последовательно соединенными с воздушными каналами в рабочем колесе, с независимыми кольцевыми диффузорными каналами, образованными на поверхности рабочего колеса, соединенными с сопловыми аппаратами закрутки и транзитными воздуховодами на их входе, сопловые лопатки, теплообменник, транзитные воздуховоды. Каждая сопловая лопатка выполнена в виде конструктивного элемента, ограниченного верхней и нижней полками, и пространства между ними, ограниченного вогнутой и выпуклой стенками пера сопловой лопатки, в виде расположенных вдоль ее оси раздаточного коллектора входной кромки и раздаточной полости. Раздаточный коллектор входной кромки соединен на входе с воздушной полостью камеры сгорания, а на выходе через перфорационные отверстия во входной кромке сопловой лопатки - с проточной частью турбины. Теплообменник соединен на входе с воздушной полостью камеры сгорания, а на выходе последовательно сообщен с воздушным коллектором и раздаточной полостью. Охлаждаемая турбина снабжена раздаточным коллектором для охлаждающего воздуха, охлаждающим дефлектором и двумя транзитными дефлекторами, установленными в раздаточной полости вдоль ее оси с зазором относительно друг друга и с зазором между вогнутой и выпуклой стенками пера сопловой лопатки с образованием вдоль стенок охлаждающих каналов. Охлаждающий дефлектор выполнен с перфорационными отверстиями на двух его противоположных стенках, установлен в раздаточной полости на стенке раздаточного коллектора входной кромки и направлен стенками с перфорационными отверстиями в направлении вогнутой и выпуклой стенок пера сопловой лопатки. В верхней и нижней полках сопловой лопатки выполнены воздуховоды, соединенные на выходе с проточной частью турбины. Раздаточный коллектор для охлаждающего воздуха соединен с источником воздуха, с входом воздуховода верхней полки и с входом охлаждающего дефлектора. Вход воздуховода в нижней полке соединен с выходом охлаждающего дефлектора. Воздушный коллектор соединен с входом транзитных дефлекторов, а транзитные воздуховоды - с выходом транзитных дефлекторов и сопловыми аппаратами закрутки, соединенными с кольцевыми диффузорными каналами. Раздаточная полость соединена с проточной частью турбины. Изобретение позволяет увеличить ресурс и надежность двигателя, улучшить экономичность турбины за счет охлаждения сопловой лопатки турбины воздухом другого термодинамического уровня (по температуре и давлению), что приводит к понижению температуры газа перед турбиной и обеспечивает оптимальный расход и температуру охлаждающего воздуха, подаваемого для охлаждения пера сопловой лопатки турбины. 6 з.п. ф-лы, 5 ил.

Изобретение относится к технологическим средствам соединения линий оптической связи

Изобретение относится к области приборостроения и может быть использовано для крепления волоконно-оптических элементов линии связи

 


Наверх