Патенты автора Нелюбова Виктория Викторовна (RU)

Изобретение относится к производству строительных материалов и может быть использовано для получения камней бетонных стеновых лицевых, проявляющих способность к самоочищению под действием ультрафиолетового излучения. Технической задачей, на которую направлено предлагаемое изобретение, является снижение расхода вяжущего, повышение равномерности распределения фотокатализатора и улучшение его закрепления в изделии, повышение декоративных характеристик лицевого слоя, повышение долговечности способности к самоочищению и морозостойкости изделий. Бетонная смесь для изготовления самоочищающегося камня бетонного стенового лицевого включает композиционный фотокаталитический компонент, вяжущее, мелкий заполнитель – кварцевый песок, пластификатор, воду. В качестве композиционного фотокаталитического компонента содержит анатаз-кремнеземный материал на основе диатомита, в качестве вяжущего белый портландцемент, в качестве пластификатора – гиперпластификатор Melflux 5581F, при следующем соотношении компонентов, мас.%: композиционный фотокаталитический компонент 1,4-2,3; белый портландцемент 12-15; кварцевый песок 75-82; Melflux 5581F 0,2-0,3; вода остальное. Также описан самоочищающийся камень бетонный стеновой лицевой, полученный из указанной выше бетонной смеси. 2 н.п. ф-лы, 2 табл.

Группа изобретений относится к промышленности строительных материалов и может быть использована для изготовления теплоизоляционных ячеистых бетонов неавтоклавного твердения различного назначения. Сырьевая смесь для пеногазобетона неавтоклавного твердения включает, мас.%: портландцемент 51,76-51,90, высококонцентрированную суспензию влажностью 12-22% с содержанием частиц менее 5 мкм 30-50%, полученную мокрым помолом кварцевого песка, 12,94-12,97, пенообразователь "Пеностром" 0,09-0,27, газообразователь алюминиевый, содержащий более 90 мас.% активного алюминия с размером частиц не более 100 мкм, 0,01-0,09, воду 34,94-35,03. В способе получения указанной выше сырьевой смеси, включающем подготовку наноструктурированного модификатора, последующее смешение в ультразвуковом диспергаторе под действием ультразвука полученного наноструктурированного модификатора, алюминиевого газообразователя и воды, подачу полученной суспензии в пенобетоносмеситель, где осуществляют ее смешение на малых скоростях 60 об/мин с портландцементом до полной однородности системы с последующим введением заданного количества пенообразователя и окончательным перемешиванием на высоких скоростях 250 об/мин в течение 3-5 минут до появления стабильности пеномассы, подготовку наноструктурированного модификатора осуществляют путем мокрого помола кварцевого песка с получением высококонцентрированной суспензии влажностью 12-22% с содержанием частиц менее 5 мкм 30-50%. Технический результат – повышение прочности при сжатии и снижение теплопроводности. 2 н.п. ф-лы, 1 ил., 8 табл., 1 пр.
Изобретение относится к конструкционным материалам и может использоваться в различных отраслях промышленности, например в дорожном и гражданском строительстве. Технический результат заключается в повышении трещиностойкости, прочности, стойкости микроармирующего компонента к воздействию агрессивной щелочной среды цементного камня. Мелкозернистый цементобетон состоит из цемента, песка, воды, пластифицирующей добавки и базальтового волокна, вводимое в смесь методом гидрораспушения, при следующем соотношении компонентов, мас.%: цемент - 34, песок - 64, вода -1,4, пластифицирующая добавка - 0,3, базальтовое волокно - 0,3. 2 табл.
Изобретение относится к строительным материалам и может быть использовано при возведении зданий и сооружений, использующих в качестве основных стеновых материалов изделия теплоизоляционно-конструкционного назначения. Теплоизоляционно-конструкционная кладочная смесь на основе легкого заполнителя содержит, кг/м3: портландцемент ЦЕМ1-42.5Н 173-346, кварцевый песок Разуменского месторождения 700-1260, полые микросферы Новочеркасской ГРЭС 50-250, водоудерживающую добавку Mecellose FMC 24502 0,1% от массы портландцемента, воду - остальное, причем процентное содержание легкого заполнителя - указанных микросфер дано от объема песка. Технический результат - снижение теплопроводности. 1 пр., 3 табл.
Изобретение относится к способу изготовления изделий из ячеистого бетона и к составу сырьевой смеси для изготовления неавтоклавного теплоизоляционного ячеистого бетона. Состав сырьевой смеси для изготовления неавтоклавного ячеистого бетона естественного твердения содержит, мас.%: портландцемент 63,03-66,06, синтетический пенообразователь 0,15-0,21, газообразователь, содержащий 80% активного алюминия с размером частиц не более 100 нм и 20% полиэтиленгликоля, 0,68-0,74, вода 33,04-36,07. Состав дополнительно содержит модифицирующую нанокристаллическую добавку - корунд в количестве 0,02-0,3 мас.% от массы портландцемента. Способ получения состава по п.1 включает подачу и перемешивание в смесителе миксерного типа сначала пенообразователя с частью воды и портландцемента, а затем в полученную массу при перемешивании - суспензии из указанного газообразователя и части воды. В указанную суспензию дополнительно вводят модифицирующую нанокристаллическую добавку - корунд в количестве 0,02-0,3 мас.% от массы портландцемента. Технический результат - повышение прочности при снижении плотности и теплопроводности, получение ячеистого бетона с оптимизированной поровой структурой. 2 н. и 2 з.п. ф-лы, 2 пр., 7 табл.

Изобретение относится к строительной индустрии и может быть использовано для получения силикатного кирпича и прессованных стеновых материалов автоклавного твердения

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления теплоизоляционных и конструкционно-теплоизоляционных бетонов автоклавного твердения различного назначения

Изобретение относится к промышленности строительных материалов, конкретно к получению прессованных изделий автоклавного твердения

 


Наверх