Патенты автора Кузьмин Георгий Петрович (RU)

Предлагаемое решение предназначено для использования в пищевой, строительной и сельскохозяйственной промышленности, которые могут являться потребителями аккумулированного холода. Технический результат заключается в повышении степени надежности и эффективности. Технический результат достигается тем, что: круглогодичное охлаждающее устройство на основе использования холодного наружного воздуха, включающее аккумулятор холода с системой накопления холода при температуре окружающего воздуха ниже температуры охлаждения, охлаждения, приточную и вытяжные трубы воздушной охлаждающей системы (ОС), теплообменник, расположенный в теплом помещении, характеризуется тем, что содержит водяную охлаждающую систему, включающую погружной насос, нагнетательную трубу водяной ОС, соединяющий через кран погружной насос с теплообменником, сливную трубу водяной ОС, верхний конец которой соединен через кран с теплообменником, а нижний открытый конец опущен в подземный резервуар, служащий аккумулятором холода, к теплообменнику также присоединены приточная и вытяжная трубы воздушной ОС через соответствующие вентили, причем входное отверстие приточной трубы расположено ниже выходного окна вытяжной трубы. 4 з.п. ф-лы, 1 ил.

Изобретение относится к управлению температурным режимом закрытых помещений в холодное время года и может быть использовано в крытых катках для массового катания в зимнее время. Техническим результатом предлагаемого изобретения является снижение эксплуатационных затрат в сезонно-действующих крытых ледовых катках для массового катания. Технический результат достигается тем, что способ управления температурным режимом крытого ледового катка (для массового катания, спортивно-зрелищных мероприятий), включающий создание ледового поля и его охлаждение, характеризуется тем, что для создания ледового поля и поддержания необходимой температуры ледового поля (и воздуха) в помещении катка используются естественные (климатические) источники энергии (и охлаждения). В качестве ледового поля может использоваться покровный лед естественного или искусственного водоема. Глубина водоема может быть больше глубины промерзания водоема под катком. Отрицательные температуры поверхности льда и воздуха в помещении катка могут обеспечиваться передачей теплоты водоема и фазового перехода вода-лед через покровный лед в помещение катка и термическим сопротивлением ограждающей конструкции помещения. Устройство для осуществления способа управления температурным режимом крытого ледового катка содержит крытый каток (помещение с ограждающими конструкциями) с ледяным полем (основанием катка) и охлаждающим устройством, отличающееся тем, что основание катка содержит железобетонную несущую раму, опирающуюся на сваи, установленные в донный грунт водоема. Указанное выполнение позволит стабилизировать положение поверхности катка. На несущую железобетонную раму может быть натянута металлическая сетка для обеспечения безопасности пользователей катка. Верхняя отметка несущей железобетонной рамы с натянутой металлической сеткой может располагаться в воде водоема на глубине, равной безопасной толщине ледяного покрова. Технический результат - снижение эксплуатационных затрат в сезонно-действующих крытых ледовых катках для массового катания достигается отсутствием необходимости в энергозатратных холодильных машинах для поддержания состояния поверхности льда. Заявляемое конструкторско-техническое решение может с успехом применяться в строительстве для изготовления крытых ледовых катков в местностях с достаточно длительным периодом атмосферных отрицательных температур. 2 н. и 5 з.п. ф-лы, 2 ил.

Изобретение относится к возведению грунтовых плотин преимущественно в условиях северной строительно-климатической зоны. Способ возведения грунтовой плотины методом гидромеханизации в области распространения многолетнемерзлых грунтов включает разработку грунтов методом гидромеханизации, транспортировку пульпы на место укладки в теле плотины по трубопроводам. Мерзлые грунты разрабатывают размывом водой через буровые скважины 2. Добычные скважины 2 располагают в непосредственной близости от возводимой плотины. Образовавшиеся в результате скважинной гидродобычи грунта полости в мерзлой толще заполняют на 90% их объёма водой, которая после замерзания обеспечивает устойчивость окружающих пород. Может быть предусмотрен замкнутый цикл водооборота. В цикле водооборота может использоваться искусственный водоём 6, основание которого гидроизолировано полиэтиленовой пленкой 7. Техническим результатом изобретения является повышение эффективности, минимизация изменения ландшафта, повышение экологичности. Повышение эффективности достигается снижением площади разработки грунта и снижением длины транспортировки грунта, а также возможностью выборочной разработки грунта, в том числе окруженного скальными породами. Минимизация изменения ландшафта достигается сохранением профиля поверхности над разрабатываемым грунтом. Повышение экологичности достигается минимизацией изменения флоры и фауны на поверхности участка разработки грунта, сохранением популяций. Изобретение может с успехом применяться для производства грунтовых плотин в условиях вечной мерзлоты. 1 з.п. ф-лы, 2 ил.

Изобретение относится к системам для охлаждения и замораживания грунтов в горнотехническом строительстве в областях распространения вечной мерзлоты (криолитозоне), характеризующихся наличием природных рассолов с отрицательными температурами (криопэгами). Техническим результатом предлагаемого изобретения является повышение экономичности, надежности и стабильности работы. Технический результат достигается тем, что система для охлаждения и замораживания грунтов, включающая установку подземных теплообменников с жидким теплоносителем с температурой замерзания ниже нуля градусов по Цельсию (рассолом), характеризуется тем, что в качестве жидкого теплоносителя используют криопэги, причем криопэг подается в замораживающие колонки из криолитозоны в теплообменники. Отработанные криопэги могут принудительно отводиться в массив криолитозоны. Наружная часть циркуляционного контура может быть термоизолирована. Технический результат – повышение экономичности достигается отсутствием энергозатратных холодильных машин и за счет отсутствия необходимости в приготовлении специального охлаждающего раствора. Технический результат – повышение надежности достигается снижением количества компонентов системы, вероятность выхода из строя каждого из которых отличается от нулевой. Технический результат – повышение стабильности работы достигается стабильностью температуры криопэга, общее количество которого значительно превышает количество используемого за сезон криопэга. Изобретение может с успехом применяться при строительстве промышленно-гражданских сооружений. 2 з.п. ф-лы, 1 ил.

Способ возведения полигонов твердых бытовых отходов в районах распространения многолетнемерзлых грунтов включает разметку траншеи, выемку из траншеи плодородного грунта и материнской породы с расположением дна траншей ниже границы сезонного протаивания, заполнение траншеи твердыми бытовыми отходами, засыпку материнской породы и плодородного грунта поверх твердых бытовых отходов. Траншеи заполняют твердыми бытовыми отходами до уровня поверхности земли. Техническим результатом предлагаемого изобретения является повышение емкости полигона и снижение площади захоронения бытовых отходов. 5 з.п. ф-лы, 2 ил.

Изобретение относится к горной теплофизике и предназначено для охлаждения в теплое время года подземных сооружений, построенных в толще многолетнемерзлых горных пород. Техническим результатом группы изобретений является повышение надежности, снижение энергетических затрат, повышение автономности криохранилища и обеспечение низких отрицательных температур в подземных сооружениях в течение всего года. Способ охлаждения в летнее время подземных сооружений в массиве многолетнемерзлых горных пород включает аккумулирование холода в верхней части массива мерзлых грунтов в зимнее время посредством сезонно действующего воздушного охлаждающего устройства. Подземное сооружение располагают на глубине, которая определяется по формуле: где h1 - глубина сезонного оттаивания грунтов, в подошве которой располагают трубы охлаждающего устройства, м; τ - продолжительность работы охлаждающего устройства в холодное время года (принимаемая равной времени запаздывания температурной волны на глубине расположения подземного сооружения) за сезон, ч; λ и C - средние значения коэффициента теплопроводности, Вт/(м⋅К), и объемной теплоемкости грунтов, Дж/ (м3⋅К), в кровле подземного сооружения; T - амплитуда колебаний температуры наружного воздуха, К. Устройство для круглогодичного охлаждения подземных сооружений в массиве многолетнемерзлых горных пород включает два независимых воздушных охлаждающих устройства, каждое из которых включает как минимум одну горизонтальную охлаждающую трубу в грунте и как минимум две вертикально ориентированные трубы, которые выступают над поверхностью земли. Внутренние объемы вертикальных и горизонтальных труб соединены. Как минимум одна горизонтальная охлаждающая труба одного охлаждающего устройства уложена в грунт вплотную к боковой стенке подземного сооружения на уровне середины его высоты, а как минимум одна горизонтальная охлаждающая труба второго охлаждающего устройства уложена в основании слоя сезонного оттаивания. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к области инженерной геологии, в частности к изучению физических свойств грунтов, и может быть использовано для определения характеристик пористости грунта при компрессионных испытаниях образцов в условиях невозможности бокового расширения. Способ определения характеристик пористости грунта при компрессионных испытаниях включает взвешивание образца, измерения высоты и площади поперечного сечения его, высушивание образца до установления постоянной массы, определение массы высушенного образца и объема минеральных частиц. Причем пористость грунта определяют на каждой из ступеней давления компрессионных испытаний по формуле: где QUOTE – объем минеральных частиц в образце; QUOTE площадь поперечного сечения образца; QUOTE – высота образца перед началом компрессионных испытаний (начальная высота); QUOTE – изменение высоты образца на i-й ступени, а коэффициент пористости грунта определяют на каждой из ступеней давления компрессионных испытаний по формуле QUOTE Техническим результатом является повышение скорости определения характеристик пористости грунта на всех ступенях давления и снижения трудоемкости. 1 ил.

Устройство для поддержания околонулевой температуры в закрытых помещениях содержит емкость с крышкой, которая заполнена жидкостью, теплообменник, надводная часть которого расположена на верхней плоскости емкости, подводная часть теплообменника расположена внутри емкости с жидкостью. Надводная часть теплообменника и подводная часть выполнены из гофрированного металла, а между ними расположены минимум один теплопроводящий и скрепляющий мост. Техническим результатом предлагаемого технического решения является повышение долговечности, эффективности и упрощение монтажа. 4 з.п. ф-лы, 3 ил.

Изобретение относится к строительству и может быть использовано при инженерно-геологических изысканиях и проектировании зданий и сооружений в области распространения многолетнемерзлых грунтов. Способ определения количества незамерзшей воды в мерзлых грунтах включает оттаивание мерзлого грунта до температуры ниже установленной температуры начала его оттаивания, одновременную регистрацию температуры образца и времени, построение графика изменения во времени логарифма избыточной температуры, определяемой как разность между температурой образца и температурой среды, фиксирование по построенному графику времени и температуры начала оттаивания, построение графика изменения температуры образца во времени, по которому определяют время и температуру окончания оттаивания и расчет искомого количества незамерзшей воды из приведенной зависимости. Образец мерзлого грунта помещают в металлический сосуд с дном. После оттаивания насыщают водой до полного заполнения пор и измеряют начальную высоту образца. Оттаявший образец грунта замораживают ступенчато-возрастающей отрицательной температурой с выдержкой на каждой ступени до прекращения деформации образцаю. На каждой ступени температуры снимают показания индикатора деформации. Технический результат состоит в повышении точности измерения, обеспечении получения возможности определения количества незамерзшей воды в мерзлых грунтах по водонасыщенным образцам, упрощении расчетов количества незамерзшей воды. 4 з.п. ф-лы, 1 ил.

Изобретение относится к гидротехнике, а именно к возведению грунтовых плотин с мерзлотной завесой в теле и основании. Грунтовая плотина на многолетнемерзлом основании выполнена от основания плотины до ее гребня из грунта и содержит верховую 3 и низовую 4 призмы с откосами и противофильтрационную мерзлотную завесу в теле и основании, созданную с помощью вертикально установленных замораживающих устройств 5. На внешней поверхности гребня 2, низовой 4 и верховой 3 призм плотины до уреза воды 1 укладывается теплоизоляционный материал 6. Способ создания грунтовой плотины с противофильтрационной мерзлотной завесой в теле и основании с помощью вертикально установленных замораживающих устройств 5 включает укладку на поверхности гребня 2, низового 4 и верхового 3 откосов плотины до уреза воды 1 теплоизоляционного материала 6. Укладку теплоизоляционного материала 6 производят после замораживания талых слоев грунта тела и основания плотины и максимального их охлаждения с помощью замораживающих устройств 5 и теплообмена поверхности плотины с холодным наружным воздухом в конце первой зимы после возведения плотины. Теплоизоляционный материал 6 можно засыпать слоем грунта или закреплять анкерами. Замораживающие устройства можно устанавливать в предварительно пробуренные скважины, заглубленные в мерзлоту на глубину не менее h1, равную 1,0-1,5 м, с шагом, обеспечивающим смыкание льдогрунтовых цилиндров, образованных отдельными устройствами. Испытания способа создания противофильтрационной мерзлотной завесы в грунтовых сооружениях были проведены на ограждающей дамбе о. Круглое в г. Якутске, показавшие эффективность способа. Техническим результатом заявленной группы изобретений является поддержание в теплое время года верхней поверхности противофильтрационной мерзлотной завесы на более высоком уровне и уменьшение в результате этого высоты плотины и расхода строительного грунта. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области инженерной геологии применительно к определению необходимых параметров грунта. Способ включает отбор образца грунта, взвешивание и определение его объема, высушивание и взвешивание высушенного образца, определение плотности и влажности образца грунта и расчет по полученным значениям плотности и влажности грунта, причем предварительно строят графики зависимости относительного содержания воздуха в грунте и степени заполнения пор талого грунта водой и мерзлого грунта льдом от влажности при различных постоянных значениях плотности грунта, причем расчет данных для построения графиков производят в двух точках - при нулевой суммарной влажности талого или мерзлого грунта и при нулевом относительном содержании воздуха в образце грунта из заданных соотношений для талых и мерзлых грунтов. Затем по экспериментально найденным значениям плотности сухого грунта и влажности грунта из графиков находят величины относительного содержания воздуха в образце грунта в талом и мерзлом состояниях, пористость грунта, полную влагоемкость образца грунта в талом и мерзлом состояниях и степень заполнения пор образца грунта в талом состоянии - водой и мерзлом состоянии - льдом, для чего из точки на оси абсцисс, соответствующей экспериментально найденной величине суммарной влажности, проводят вертикальную прямую до пересечения с наклонными прямыми зависимости относительного содержания воздуха в образце грунта в талом и мерзлом состояниях от суммарной влажности и степени заполнения грунта водой или льдом от суммарной влажности, ординаты точек пересечения которых равны значениям относительного содержания воздуха в образце грунта и степени заполнения пор образца грунта в талом и мерзлом состояниях, а пересечения наклонных прямых зависимости относительного содержания воздуха в образце грунта в талом и мерзлом состояниях от суммарной влажности с осью ординат дают значение пористости образца грунта, а с осью абсцисс - значения полной его влагоемкости в талом и мерзлом состояниях. Достигается повышение оперативности определения. 1 ил.

Изобретение относится к области инженерной геологии, в частности к определению физических характеристик грунтов, и может быть использовано при испытании образцов грунта в условиях невозможности бокового расширения (компрессионных испытаниях). Способ определения плотности сухого грунта при компрессионных испытаниях включает определение объема основного образца грунта, измерения производят на более чем двух ступенях давления (в одометре), причем при увеличении давления от ступени к ступени измеряют приращение деформации грунта (при измерении образцы выдерживают до стабилизации деформации). При этом дополнительно изготавливают идентичный основному дополнительный образец. Затем производят высушивание дополнительного идентичного образца грунта до установления постоянной массы. Далее измеряют массу и объем высушенного образца грунта, рассчитывают начальную плотность высушенного грунта. Затем определяют путем вычислений плотность грунта на всех ступенях давления. Причем высушивание образцов грунта можно производить при 105ºC до установления постоянной массы. Плотность грунта для всех значений давлений можно определять по формуле , где ρ d , o - плотность сухого грунта, h o - начальная высота образца, Δ h - абсолютная деформация образца. Техническим результатом является расширение области применения, что достигается применением сравнительного анализа образцов грунта, в том числе и талого для получения всего набора деформационных характеристик грунта. 1 з.п. ф-лы.

Устройство теплообмена жидкостей и газов включает как минимум одну теплообменную конструкцию, которую располагают ниже поверхности земли. В нижней части теплообменной конструкции содержится подземный резервуар. Выше подземного резервуара расположен водяной теплообменник для использования в теплое время года. Устройство дополнительно содержит погружной насос, который расположен в теплое время года на дне корпуса центральной замораживающей установки с нагнетающим шлангом, который соединен со входом водяного теплообменника, и сливной шланг, соединенный с выходом водяного теплообменника и резервуаром. Использование данного изобретения позволяет обеспечить эффективность и устойчивость работы теплообменного устройства. 6 з.п. ф-лы, 3 ил.

Изобретение относится к строительному производству и предназначено для определения морозного пучения грунта при промерзании сезоннопротаивающего слоя. Способ определения морозного пучения грунта при промерзании сезоннопротаивающего слоя включает бурение скважины перед началом его промерзания, отбор образцов грунта, измерение глубины сезонного протаивания ξ, определение на образцах плотности сухого грунта ρd,th. Дополнительно бурение скважин производят после промерзания сезоннопротаивающего слоя, на образцах дополнительно определяют плотность сухого грунта после промерзания сезоннопротаивающего слоя ρd,f, а величина пучения определяется по приведенной зависимости. Технический результат состоит в снижении трудоемкости работ, повышении точности определения величины пучения, обеспечении снижения материалоемкости. 2 ил., 5 табл.

Изобретение относится к области инженерной геологии, в частности к определению физических свойств грунтов

Изобретение относится к области инженерной геологии, в частности к определению физических свойств грунтов

Изобретение относится к строительству, к способам расчетов оснований сооружений, в частности к расчету нагрузки свай, погружаемых в вечномерзлый грунт

Изобретение относится к стройиндустрии, в частности к способам оценки качества твердых неорганических материалов, преимущественно имеющих мелкопористую структуру, и может быть использовано в строительстве, геологии и минералогии

Изобретение относится к сельскохозяйственной биотехнологии, к энерго- и экономически малозатратным способам криобиологического сохранения в жизнеспособном и генетически интактном состоянии семян растений в течение многих десятилетий (столетий)
Изобретение относится к области охраны окружающей среды, а именно к способам захоронения твердых бытовых отходов в многолетнемерзлых грунтах

 


Наверх