Патенты автора Николаева Елена Владимировна (RU)

Изобретение относится к области корректируемых инерциальных навигационных систем и может быть использовано при разработке комплексированных навигационных систем. Способ определения корректирующих поправок в бесплатформенной инерциальной навигационной системе, где для коррекции бесплатформенной инерциальной навигационной системы используется астроинерциальная информация с астроинерциальной навигационной системы, а также позиционная и скоростная информация со спутниковой навигационной системы. При этом в процессе формирования астроинформации выбирается из каталога визируемых звезд звезда, доступная визированию в данный момент времени в данной точке местоположения объекта, ее визирование с определением двух угловых поправок посредством вычисления разности между расчетным и фактическим углами визирования звезды по азимуту и разности между расчетным и фактическим углами ее визирования по высоте. По полученной позиционной и скоростной информации на базе динамической группы уравнений ошибок корректируемой системы вычисляются ее позиционная ошибка, скоростная ошибка и ошибка построения вертикали, по совокупности ошибок определяются горизонтальные проекции вектора кинематических ошибок системы на плоскость местного горизонта, затем по полученной в виде угловых поправок астроинерциальной информации и горизонтальных проекций вектора кинематических ошибок вычисляется его вертикальная проекция, производится пересчет горизонтальных и вертикальной проекций в вектор кинематических ошибок, после чего по его скорости определяются такие инструментальные ошибки, как нескомпенсированные дрейфы гироскопов. Техническим результатом изобретения является разработка способа определения корректирующих поправок в БИНС, свободного от указанных недостатков путем использования позиционной и скоростной информации, поставляемой СНС, и астроинформации, поставляемой средствами астросистемы, а также существенно повышающего надежность проведения коррекции. 14 ил.

Изобретение относится к области корректируемых инерциальных навигационных систем и может быть использовано при разработке комплексированных навигационных систем, в которых основная навигационная информация, поставляемая бесплатформенными инерциальными навигационными системами (БИНС), корректируется по позиционной и скоростной информации, поставляемой спутниковой навигационной системой (СНС), и угловой информацией, поставляемой астросистемой. Астроинерциальная навигационная система содержит систему определения корректирующих поправок бесплатформенной инерциальной навигационной системы и источники внешней информации, сигналы с которых используются в качестве входной информации для определения корректирующих поправок. В качестве первого источника внешней информации применен источник астроинформации, включающий телеблок, установленный в рамках карданова подвеса, обеспечивающего выставку телеблока на заданные углы по азимуту и высоте, блок следящих систем отработки углов наведения визирной оси телеблока, бортовую ЦВМ, по целеуказаниям которой следящие системы отрабатывают эти углы, а также блок вычисления угловых поправок. В качестве второго источника внешней информации применен источник скоростной и позиционной информации, а система определения корректирующих поправок бесплатформенной инерциальной навигационной системы выполнена трехступенчатой и включает последовательно подключенные блок определения позиционной ошибки, скоростной ошибки и ошибки построения вертикали, входами связанный с бортовой ЦВМ и источником скоростной и позиционной информации, блок определения вертикальной проекции вектора кинематических ошибок системы, а также блок определения инструментальных ошибок системы. Техническим результатом изобретения является повышение точности определения ошибок БИНС, а также надежности ее работы, путем использования позиционной и скоростной информации, поставляемой СНС, а также астроинформации, поставляемой средствами астросистемы. 16 ил.

Изобретение относится к нефтехимии, газохимии, углехимии и касается синтеза Фишера-Тропша в компактном варианте, требующем осуществления синтеза углеводородов в высокопроизводительных режимах с производительностью более 1000 кг/м3кат⋅ч. Катализатор характеризуется тем, что имеет удельную площадь поверхности в прокаленном состоянии 50-92 м2/г и после восстановления удельную площадь поверхности металлического кобальта 10,3-25,5 м2/г, средний размер частиц металлического кобальта 5,0-18,5 нм и дисперсность частиц 5,4-20,0% и содержащий 41-50 мас.% кобальта от массы прокаленного катализатора и носитель, имеющий удельную площадь поверхности 86-423 м2/г и объем пор носителя 0,20-1,07 см3/г, выбранный из группы: оксид циркония или оксид алюминия, модифицированный нанесением оксида циркония, или оксид кремния, модифицированный нанесением оксида циркония, или оксид циркония, модифицированный нанесением оксида алюминия, или оксид кремния, модифицированный нанесением оксида алюминия, при этом количество модифицирующего оксида составляет от 10 до 40 мас.% от массы носителя. Способ получения катализатора по первому варианту заключается в многократной пропитке носителя водным раствором прекурсора кобальта с последующей сушкой и прокаливанием, либо в соосаждении карбоната кобальта из основного раствора в присутствии носителя, сушке и прокаливании - по второму варианту. Изобретение обеспечивает достижение селективности катализатора в отношении образования углеводородов С5+ не менее 60% при конверсии СО не менее 70% и максимальной производительностью катализатора по высокомолекулярным углеводородам не менее 1000 кг/м3кат⋅ч. 3 н. и 2 з.п. ф-лы, 1 табл., 16 пр.

Изобретение относится к способу регенерации кобальтсодержащего катализатора для получения синтетических углеводородов по методу Фишера-Тропша. Регенерация включает окисление дезактивированного катализатора подачей в реакционную зону реактора воздуха со скоростью 500-2000 ч-1, нагревом до температуры 200-270°C со скоростью нагрева 1-3°C/мин и выдерживанием при этой температуре в токе воздуха в течение 1-5 ч. Последующее восстановление проводят подачей при температуре окисления водородсодержащего газа с объемной скоростью 1000-5000 ч-1, нагревом до температуры 300-600°C со скоростью 1-5°C/мин и выдержкой при температуре нагрева в токе водородсодержащего газа в течение 1-5 ч. Способ предусматривает проведение дополнительной стадии восстановления дезактивированного катализатора водородсодержащим газом перед окислительно-восстановительной регенерацией. При этом при восстановлении используют водородсодержащий газ одного состава с содержанием водорода от 20 до 100 об.%. Технический результат заключается в повышении эффективности регенерации и увеличении длительности работы катализатора после регенерации по сравнению с другими известными в технике способами. 3 з.п. ф-лы, 1 табл., 7 пр.
Изобретение относится к области медицины, а именно к ортопедической медицине, и предназначено для установки коронки на фронтальные зубы детям младшего возраста. Производят препарирование кариозного дефекта. Снимают слепки с обеих челюстей. Изготавливают две гипсовых рабочих модели. Моделируют из воска форму коронки зуба на первой рабочей модели. По ней штампуют каппу из полуэластичного пластика. Изготавливают коронку на второй рабочей модели. Укладывают коронку в каппу. Наносят стеклоиономерный цемент на внутреннюю поверхность коронки. Устанавливают на зуб коронку, размещенную в каппе, после чего каппу удаляют. Проводят удаление излишков стеклоиономерного цемента. Способ позволяет избежать смещения коронки и предотвратить подтекание слюны за счет фиксации коронки в полости рта с помощью каппы. 1 з.п. ф-лы, 1 пр.

Изобретение относится к области медицины, а именно к акушерству и неонатологии

 


Наверх