Патенты автора Мележик Александр Васильевич (RU)

Изобретения относятся к химической промышленности и нанотехнологии. Сначала получают интеркалированный графит путем обработки кристаллического графита раствором персульфата аммония в серной кислоте и выдерживают его до расширения. Из полученного расширенного соединения графита получают смесь путем его обработки карбамидом и глицерином. Массовое соотношение компонентов находится в пределах: карбамид : исходный графит - от 4:1 до 8:1; глицерин : исходный графит - от 15:1 до 30:1. Указанную смесь диспергируют за счет интенсивной сдвиговой деформации под давлением 0,2-2 МПа путем ее пропускания через зазор между неподвижным корпусом и вращающимся диском, составляющий не более 0,2 мм. Устройство для получения графенсодержащих материалов содержит корпус с загрузочным 2 и разгрузочным отверстиями 3, узел подачи смеси расширенного соединения графита с карбамидом и глицерином, диск 4, установленный в нижней части корпуса, соединенный с приводом вращения, приводной вал которого снабжен подшипниковым узлом, закрепленным в центральной расточке крышки, коаксиально установленной в верхней части корпуса с возможностью регулирования зазора между днищем и крышкой. Загрузочное отверстие 2 расположено в центральной части днища, на выходе выполнено в виде воронки 11, сообщено с узлом подачи соединения графита с карбамидом и глицерином и смещено от оси корпуса на расстояние 0,1-0,2 величины его радиуса. Разгрузочное отверстие расположено в боковой стенке корпуса выше верхней кромки диска. Изобретения обеспечивают получение малослойных и высокодисперсных графенсодержащих материалов в непрерывном режиме. 2 н. и 4 з.п. ф-лы, 5 ил..

Настоящее изобретение относится к способу получения водных растворов полианилина, а также к способу получения многокомпонентных композиционных графеновых материалов на основе полианилина. Способ включает обработку полианилина водным раствором фенолформальдегидной смолы резольного типа (ФФС). Полианилин используют в форме основания. Массовое соотношение фенолформальдегидной смолы к полианилину составляет от 0,25:1 до 2:1. Способ получения композиционных материалов на основе полианилина заключается в приготовлении водных дисперсий компонентов, стабилизированных ФФС, смешении водных дисперсий компонентов и коагуляции смеси за счет понижения рН. Вышеуказанный способ позволяет придать растворимость полианилину в воде и в обычных органических растворителях, что в свою очередь позволяет перерабатывать этот полимер и изготавливать из него различные композиционные материалы и изделия. 2 н.п. ф-лы, 1 ил., 1 табл., 5 пр.

Изобретения относятся к химической промышленности и нанотехнологии. Сначала порошок графита интеркалируют концентрированной серной кислотой, затем окисляют персульфатом аммония. Полученный интеркалированный графит подвергают холодному расширению при 40°С в течение 3 ч и последующему механическому отщеплению слоев графена в помольных барабанах планетарной мельницы, заполненных мелющими шарами, в течение 60 мин. Планетарная мельница содержит основание 14, водило 1 с приводом 3 вращения помольных барабанов 5, выполненных в виде цилиндрических обечаек 15 с торцевыми стенками 16 и крышкой 17 для загрузки расширенного графита и выгрузки готового продукта. Барабаны 5 заполнены мелющими шарами. Сопряжение между торцевыми стенками 16 и цилиндрической обечайкой 15 выполнено по радиусу, равному или большему радиуса мелющих шаров. Оси вращения барабанов 5 расположены вертикально либо под углом к оси вращения водила 1. Одна либо обе торцевые стенки 16 помольных барабанов 5 выполнены сферическими. В помольные барабаны 5 загружены дополнительные мелющие шары с диаметром не менее чем на 20% меньше диаметра мелющего шара (dш), и массовая доля которых 0,2-0,5 от общей массы шаров. Повышается производительность процесса получения графенов и графеноподобных материалов, упрощается конструкция планетарной мельницы и обеспечивается стабильность её работы. 2 н. и 3 з.п. ф-лы, 7 ил.

Настоящее изобретение относится к способу получения водных растворов полианилина, а также к способу получения многокомпонентных композиционных графеновых материалов на основе полианилина. Способ включает обработку полианилина водным раствором фенолформальдегидной смолы резольного типа (ФФС). Полианилин используют в форме основания. Массовое соотношение фенолформальдегидной смолы к полианилину составляет от 0,25:1 до 2:1. Способ получения композиционных материалов на основе полианилина заключается в приготовлении водных дисперсий компонентов, стабилизированных ФФС, смешении водных дисперсий компонентов и коагуляции смеси за счет понижения рН. Вышеуказанный способ позволяет придать растворимость полианилину в воде и в обычных органических растворителях, что в свою очередь позволяет перерабатывать этот полимер и изготавливать из него различные композиционные материалы и изделия. 2 н.п. ф-лы, 1 ил., 1 табл., 5 пр.

Изобретения относятся к химической промышленности и нанотехнологии. Сначала порошок графита интеркалируют концентрированной серной кислотой, затем окисляют персульфатом аммония. Полученный интеркалированный графит подвергают холодному расширению при 40°С в течение 3 ч и последующему механическому отщеплению слоев графена в помольных барабанах планетарной мельницы, заполненных мелющими шарами, в течение 60 мин. Планетарная мельница содержит основание 14, водило 1 с приводом 3 вращения помольных барабанов 5, выполненных в виде цилиндрических обечаек 15 с торцевыми стенками 16 и крышкой 17 для загрузки расширенного графита и выгрузки готового продукта. Барабаны 5 заполнены мелющими шарами. Сопряжение между торцевыми стенками 16 и цилиндрической обечайкой 15 выполнено по радиусу, равному или большему радиуса мелющих шаров. Оси вращения барабанов 5 расположены вертикально либо под углом к оси вращения водила 1. Одна либо обе торцевые стенки 16 помольных барабанов 5 выполнены сферическими. В помольные барабаны 5 загружены дополнительные мелющие шары с диаметром не менее чем на 20% меньше диаметра мелющего шара (dш), и массовая доля которых 0,2-0,5 от общей массы шаров. Повышается производительность процесса получения графенов и графеноподобных материалов, упрощается конструкция планетарной мельницы и обеспечивается стабильность её работы. 2 н. и 3 з.п. ф-лы, 7 ил.

Изобретение относится к получению водных растворов полианилина. Способ получения его включает обработку полианилина водным раствором полимерного реагента. Полимерный реагент получен взаимодействием безводной серной кислоты с гексаметилентетрамином в две стадии. Полученный далее высушенный продукт с условным наименованием аминокумулен растворяют в кислом водном растворе при массовом соотношении аминокумулена к полианилину от 0,25:1 до 4:1. Обработку полианилина проводят при действии ультразвука, хотя возможно применение диспергирующих устройств, работающих на других физических принципах, например роторно-импульсного аппарата, различных дезинтеграторов. Изобретение обеспечивает получение водорастворимой формы полианилина, используемого для синтеза нанокомпозиционных материалов. 1 з.п. ф-лы, 5 пр.

Изобретение направлено на получение углеродных материалов с развитой поверхностью и пористостью. Согласно изобретению исходное вещество, представляющее собой смесь водорастворимой фенолформальдегидной смолы, углевода и графеновых нанопластинок, подвергают термообработке при температуре до 300°C. В качестве углевода используют декстрин, или карбоксиметилцеллюлозу, или крахмал. Термообработанный продукт измельчают, смешивают с гидроксидом калия, активируют при температуре 750°С. Углеродный продукт промывают от щелочи, высушивают, измельчают, повторно промывают водой и высушивают. Изобретение обеспечивает получение мезопористого углеродного материала с удельной поверхностью 2479-3202 м2/г при среднем размере пор 4,15-4,61 нм. 5 ил., 1 табл., 6 пр.
Изобретение относится к нанотехнологии и может быть использовано при изготовлении нанокомпозитов. Углеродный наноматериал - нанотрубки или графен, частицы которых содержат на поверхности кислородсодержащие группы, обрабатывают раствором водорастворимого резольного фенолформальдегидного полимера при воздействии механической энергии. Массовое соотношение фенолформальдегидного полимера в расчете на сухой остаток к углеродному наноматериалу выбирают от 0,1:1 до 2:1. Используют механическую энергию ультразвука или пульсаций, создаваемых роторно-импульсным аппаратом. Изобретение обеспечивает получение стабильных концентрированных дисперсий углеродных наноматериалов. 6 пр.

Изобретение относится к области спасательной техники, а именно к средствам индивидуальной защиты органов дыхания, преимущественно маятникового типа, работающим на химически связанном кислороде. Дыхательную газовую смесь (ДГС) пропускают между волокнистыми подложками, на которые предварительно наносят с одной либо обеих сторон хладагент, в качестве которого используют смесь твердых высокомолекулярных углеводородов предельного характера, модифицированную наноматериалом. В качестве хладагента используют смесь модифицированных парафинов с различной температурой фазового перехода. В качестве наноматериала используют углеродный наноструктурный материал «Таунит» - смесь углеродных нанотрубок типа «Таунит» либо «Таунит-М» в количестве мас. % от 0,5 до 10 либо нанографит (полиграфен) в количестве мас. % от 0,2 до 6. В зазор между волокнистыми подложками с нанесенным хладагентом помещают безузловую сетку. Использование предлагаемого способа позволяет повысить эффективность охлаждения ДГС на 25-40°С до создания комфортных условий для дыхания. Техническим результатом является упрощение обслуживания средств защиты дыхательных путей и обеспечение возможности длительного хранения их в снаряженном состоянии. 4 з.п. ф-лы, 2 табл., 1 ил.

Изобретение может быть использовано для получения функционализированных углеродных наноматериалов. Углеродные нанотрубки озонируют в проточном сосуде в присутствии трёхокиси серы или азотной кислоты, ускоряющих воздействие озона на их поверхность. Трёхокись серы или азотную кислоту подают в сосуд с нанотрубками перед подачей озонированного воздуха. В альтернативном варианте через проточный сосуд пропускают озонированный воздух с добавкой паров трёхокиси серы или азотной кислоты со скоростью 1 м3/ч в течение 1-8 ч. Технический результат: увеличение концентрации поверхностных кислородсодержащих групп. 5 ил., 3 пр.
Изобретение относится к химической промышленности и может быть использовано при получении стабильных дисперсий в органических растворителях и изготовлении полимерных композитов. Углеродные наноматериалы - нанотрубки или графен, частицы которых содержат на поверхности гидроксильные и/или карбоксильные группы, модифицируют обработкой раствором, содержащим триэтаноламин-титанат и производные жирной кислоты - триэтаноламин-стеарат или триэтаноламин-пальмитат. Мольное отношение указанного производного жирной кислоты к титану берут от 1:1 до 3:1, а массовое отношение указанного производного жирной кислоты и соединений титана в пересчете на диоксид титана к нанотрубкам или графену берут от 0,75:1 до 2:1. Полученную суспензию обрабатывают углекислым газом до коагуляции системы, а затем промывают осадок водой. Полученный модифицированный углеродный наноматериал хорошо диспергируется в неполярных средах без использования ультразвука. 1 з.п. ф-лы, 1 табл., 9 пр.
Изобретение может быть использовано при изготовлении композитов на основе полимеров. Углеродные нанотрубки функционализируют карбоксильными и/или гидроксильными группами и обрабатывают ультразвуком в органическом растворителе в присутствии продуктов реакции тетрабутилтитаната со стеариновой или олеиновой кислотой при температуре от 40оС до температуры кипения растворителя. Полученные дисперсии углеродных нанотрубок устойчивы в неполярных органических растворителях. 1 з.п. ф-лы, 6 пр.
Изобретение может быть использовано при изготовлении композитов, содержащих органические полимеры. Дисперсия углеродных нанотрубок содержит 1 мас.ч. окисленных углеродных нанотрубок и 0,25-10 мас.ч. продукта взаимодействия органического амина, содержащего в молекуле по крайней мере одну гидроксильную группу и по крайней мере одну аминогруппу, с тетраалкилтитанатом. Дисперсия стабильна при высоком массовом содержании нанотрубок и минимальном содержании балластных веществ. 8 пр.

Изобретение направлено на получение функционализированных углеродных нанотрубок, обладающих хорошей совместимостью с полимерными матрицами. Углеродные нанотрубки подвергают обработке в парах перекиси водорода при температуре от 80°С до 160°С в течение 1-100 ч. Обработку можно проводить в аппарате с псевдоожиженным слоем углеродного наноматериала. Способ характеризуется высокой эффективностью, отсутствием токсичных продуктов окисления, малым расходом реагентов, легко масштабируется. 1 з.п. ф-лы, 2 ил., 4 табл., 4 пр.
Изобретение может быть использовано для получения модифицированных углеродных нанотрубок. Способ модифицирования углеродных нанотрубок включает обработку углеродных нанотрубок водным раствором окислителя, в качестве которого применяют раствор персульфата или гипохлорита при рН более 10, проводимую одновременно с механической обработкой. Изобретение позволяет получить модифицированные углеродные нанотрубки, обладающие хорошей диспергируемостью в воде и в полярных органических растворителях при малом расходе реагентов по сравнению с известными способами. 2 з.п. ф-лы, 2 пр.

Изобретение относится к созданию гранулированного наносорбента, который может использоваться при очистке водных сред от радионуклидов и других токсичных веществ. Состав для получения сорбента содержит (масс. част.): бентонит - 1, глауконит 2,5, оксихлорид алюминия - 1, а также нитевидный поликристаллический графит (УНМ «Таунит») в количестве 0,005-0,05 масс. част. от суммы бентонита и глауконита. Из заявленного состава производят сорбент в виде сферических гранул диаметром 2-5 мм или в виде цилиндрических гранул диаметром 2-7 мм и высотой не более 20 мм. Техническим результатом является достижение повышенной активности сорбента в отношении расширенного спектра улавливаемых загрязнений и повышение механической прочности сорбента. 1 ил., 1 табл.

Изобретение относится к области нанотехнологии и может применяться в отраслях машиностроения, транспорта, строительства, энергетики для повышения прочности и ресурса конструкций из металлических, композиционных полимерных и металлополимерных материалов. Способ диспергирования заключается в воздействии на смесь наночастиц с жидкой смолой несколькими короткими импульсами ультразвуковых колебаний общей длительностью, не превышающей 100 секунд. После воздействия каждого импульса смесь охлаждают до комнатной температуры, либо воздействуют на смесь одним импульсом с измерением температуры. Смесь охлаждают в процессе воздействия импульса так, чтобы температура смеси не превышала температуру смеси, при которой воздействие ультразвуковых колебаний приводит к уменьшению прочности при сдвиге клеевого соединения на основе клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии. Изобретение позволяет обеспечить повышение прочности клеевых соединений и стабильность этих свойств с течением времени, повысить прочность элементов конструкции. 2 з.п. ф-лы, 6 ил.
Изобретение может быть использовано при получении модифицирующих добавок для строительных материалов. Дисперсия углеродных нанотрубок содержит, мас.%: углеродные нанотрубки 1-20; поверхностно-активное вещество - натриевую соль сульфинированного производного нафталина 1-20; аэросил 5-15; вода - остальное. Дисперсия может дополнительно содержать этиленгликоль в качестве антифриза. Дисперсия устойчива при хранении, растворяется в воде, обеспечивает повышение прочности строительных материалов. 1 з.п. ф-лы, 4 пр.
Изобретение может быть использовано при получении модифицирующих добавок для строительных материалов. Дисперсия углеродных нанотрубок содержит, мас.%: углеродные нанотрубки 1-20; поверхностно-активное вещество - натриевую соль сульфинированного производного нафталина 1-20; аэросил 5-15; вода - остальное. Дисперсия может дополнительно содержать этиленгликоль в качестве антифриза. Дисперсия устойчива при хранении, растворяется в воде, обеспечивает повышение прочности строительных материалов. 1 з.п. ф-лы, 4 пр.
Изобретение может быть использовано при получении модифицирующих добавок для строительных материалов. Дисперсия углеродных нанотрубок содержит, мас.%: углеродные нанотрубки 1-20; поверхностно-активное вещество - натриевую соль сульфинированного производного нафталина 1-20; аэросил 5-15; вода - остальное. Дисперсия может дополнительно содержать этиленгликоль в качестве антифриза. Дисперсия устойчива при хранении, растворяется в воде, обеспечивает повышение прочности строительных материалов. 1 з.п. ф-лы, 4 пр.
Изобретение может быть использовано при получении модифицирующих добавок для строительных материалов. Дисперсия углеродных нанотрубок содержит, мас.%: углеродные нанотрубки 1-20; поверхностно-активное вещество - натриевую соль сульфинированного производного нафталина 1-20; аэросил 5-15; вода - остальное. Дисперсия может дополнительно содержать этиленгликоль в качестве антифриза. Дисперсия устойчива при хранении, растворяется в воде, обеспечивает повышение прочности строительных материалов. 1 з.п. ф-лы, 4 пр.
Изобретение может быть использовано при получении модифицирующих добавок для строительных материалов. Дисперсия углеродных нанотрубок содержит, мас.%: углеродные нанотрубки 1-20; поверхностно-активное вещество - натриевую соль сульфинированного производного нафталина 1-20; аэросил 5-15; вода - остальное. Дисперсия может дополнительно содержать этиленгликоль в качестве антифриза. Дисперсия устойчива при хранении, растворяется в воде, обеспечивает повышение прочности строительных материалов. 1 з.п. ф-лы, 4 пр.

Группа изобретений может быть использована в химической промышленности. В реактор, содержащий корпус 1, на внешней стороне которого расположены нагревательные элементы 2 и теплоизоляция, загружают твердый дисперсный катализатор. Частицы катализатора приводят при температуре каталитического пиролиза в контакт с газом - источником углерода, подаваемым через трубу 7 или несколько патрубков. В газовой среде реактора возбуждают осесимметричные либо круговые акустические волны с резонансной частотой собственных колебаний газа или газопорошковой массы. Излучатель акустических колебаний может быть выполнен в виде акустической сирены 8, соединенной трубой 7 с нижней частью реактора. Отработанный газ выводят из реактора через верхнюю трубу 3, а через нижнюю трубу 4 в бункер 5 выгружают полученные углеродные нанотрубки. Во время роста углеродных нанотрубок труба 4 перекрыта заслонкой 6. Повышается производительность, снижаются энергозатраты, интенсифицируется процесс синтеза нанотрубок. 2 н. и 3 з.п. ф-лы, 5 ил.

Изобретение относится к технологии углеродных материалов, конкретно - к технологии получения углеродных наноматериалов, в частности нанотрубок и нановолокон, методом химического осаждения из газовой фазы

Изобретение относится к добавкам в строительные растворы и может быть использовано при производстве бетонных и железобетонных изделий, а также для приготовления других строительных растворов на предприятиях стройиндустрии

Изобретение относится к способам получения катализаторов для выращивания углеродных нанотрубок из газовой фазы
Изобретение относится к нанотехнологии

Изобретение относится к химической технологии осуществления гетерофазных реакций взаимодействия твердых веществ с газом или термического разложения и касается способа получения углеродных волокнистых материалов каталитическим методом

Изобретение относится к получению углеродных наноматериалов методом химического осаждения из газовой среды

Изобретение относится к химическим катализаторам для производства углеродных нанотрубок (УНТ) методом каталитического пиролиза углеводородов

Изобретение относится к катализаторам для производства углеродных нанотрубок
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх