Патенты автора Руденко Олег Владимирович (RU)

Изобретение относится к областям строительной акустики и транспортного машиностроения. Сущность изобретения заключается в том, что определяют спектр воздействующего шума и выявляют в нём доминирующие спектральные составляющие, на которые затем настраивают собственные частоты резонаторов Гельмгольца путем подбора размеров резонатора, определяющих значение собственной частоты, а для перестройки собственной частоты резонатора в область низкочастотного шума и инфразвука значительно увеличивают массу колеблющейся в горле среды, для чего заполняют горло иной средой, например вязкой жидкостью или гелем, при сохранении в полости резонатора газовой среды, а при выявлении в спектре нескольких доминирующих дискретных составляющих, в том числе отличающихся по частоте на декаду и более, на инфразвуковых и низких звуковых частотах применяют резонатор с увеличенной массой среды в горле, а на высоких частотах применяют резонатор с газовой средой во всём его объеме, при этом для удержания в горле резонатора иной среды формируют два изолирующих слоя, внутренний и внешний, выполненные, например, из газовлагонепроницаемой динамически податливой пленки, таким образом, что внутренний слой плёнки разделяет между собой горло и полость, а внешний слой плёнки отделяет горло резонатора от внешней среды. Исполнение резонатора Гельмгольца с увеличенной массой среды в горле применяют также при создании предназначенного для подавления низкочастотного шума звукопоглощающего материала, выполняемого в виде перфорированной панели, монтируемой с зазором на стене помещения, для чего заполняют отверстия панели иной средой, например вязкой жидкостью. Техническим результатом изобретения является существенное расширение границ диапазона рабочих частот шумоподавления в низкочастотную область, вплоть до инфразвукового диапазона, без увеличения габаритов резонатора Гельмгольца. 1 з.п. ф-лы, 8 ил., 1 табл.

Изобретение относится к области геофизики и может быть использовано для осуществления мониторинга состояния геологической среды при разработке шельфовых и глубоководных месторождений полезных ископаемых, для локализации крупных неоднородных образований, таких как различного рода заиленные объекты, вулканические структуры в морском дне и т.п. Согласно заявленному способу производят площадную расстановку на исследуемой территории с заданным шагом измерительных пунктов. Каждый измерительный пункт состоит из установленного в толще ледового покрова сейсмоприемника и расположенного в толще воды под сейсмоприемником гидроакустического векторного приемника. На каждом измерительном пункте регистрируют сейсмоакустические и гидроакустические сигналы от шумовых источников в течение определенного времени. После чего выделяют поверхностную сейсмическую волну из сейсмоакустического сигнала путем сравнения сейсмоакустических и гидроакустических сигналов, отфильтровывают сейсмоакустический сигнал от гидроакустических помех и шумов ледового покрова. Затем вычисляют взаимно-корреляционную функцию отфильтрованных поверхностных сейсмических волн для каждой пары сейсмоприемников. Определение времени распространения поверхностной сейсмической волны проводят по положению максимума взаимно-корреляционной функции. Строят экспериментальные карты скорости поверхностной сейсмической волны для разных ее частот ƒ, моделируют карты скорости поверхностной сейсмической волны для тех же частот ƒ путем построения математических моделей исследуемой геологической среды с разным распределением значений упругих параметров по глубине и сравнивают модельные карты скорости поверхностной сейсмической волны с полученными экспериментальными картами скорости поверхностной сейсмической волны. Выбирают математическую модель исследуемой геологической среды, для которой модельные карты скорости поверхностной сейсмической волны идентичны полученным экспериментальным картам скорости поверхностной сейсмической волны. После чего выносят суждение о наличии полезных ископаемых по значению упругих параметров выбранной математической модели исследуемой геологической среды. Технический результат – повышение точности и достоверности поиска полезных ископаемых на шельфе морей, покрытых льдом. 3 ил.

Изобретение относится к акустическим пеленгаторам (АП), акустическим локаторам (АЛ) и может быть использовано для определения пеленга источника звука (ИЗ). Задачей изобретения является повышение точности пеленгования ИЗ при наклонных к плоскости горизонта поверхностях Земли, где размещается акустическая антенна, и сокращение времени на определение пеленга этого источника. Пеленг ИЗ в данном способе определяют следующим образом: измеряют температуру воздуха, скорость ветра, дирекционный угол его направления в приземном слое атмосферы и вводят их в электронную вычислительную машину, намечают по топографической карте район особого внимания (РОВ), где могут размещаться огневые позиции артиллерии и минометов, выбирают на местности ровную площадку примерно прямоугольной формы длиной не менее трехсот метров и шириной не менее десяти метров, большие стороны которой были бы примерно перпендикулярны направлению на примерный центр РОВ, измеряют угол наклона этой площадки к плоскости горизонта и с учетом этого угла, используя оптико-механический прибор и дальномерную рейку, устанавливают ЗП специальным образом на местности, принимают акустические сигналы и помехи, преобразуют их в электрические сигналы и помехи, обрабатывают в 1 и 2 каналах обработки сигналов АП или АЛ, определяют на выходе этих каналов постоянные напряжения U1 и U2, пришедшие только из РОВ, вычитают из напряжения U1 напряжение U2, складывают эти напряжения, получают отношение разности к их сумме ηСР и автоматически по программе вычисляют истинный пеленг источника звука αИ. 8 ил.

Изобретение относится к медицине, а именно к лабораторной диагностике, и может применяться для определения аполипопротеина А1 и аполипопротеина В сыворотки крови с целью выявления факторов риска атеросклероза коронарных артерий при скрининге у населения. Способ включает пропускание ультразвука с изменяющейся частотой через пробы с дистиллированной водой и через пробы с сывороткой крови при двух разных температурах, измерение скоростей прохождения ультразвука через пробы и определение величин относительных скоростей прохождения ультразвука через пробы, при этом используют пару проб с дистиллированной водой и пару проб с сывороткой крови, при этом температуру одной из проб в паре поддерживают ниже, чем другой, но температуру проб в парах поддерживают одинаковыми в интервале температур 25-40°C, затем определяют коэффициент поглощения ультразвука в дистиллированной воде и коэффициент поглощения ультразвука в сыворотке крови и его зависимость от частоты в диапазоне частот 4-15 МГц, а также зависимость от температуры скорости ультразвука в сыворотке крови, после чего определяют аполипопротеин А1 и аполипопротеин В путем решения системы линейных уравнений относительно двух неизвестных. Изобретение обеспечивает повышение точности и информативности, сокращение сроков проведения исследований. 3 пр.

Изобретение относится к области биомедицинских технологий и может быть использовано для измерения вязкости крови в процессе забора крови из кровеносного сосуда для проведения анализов крови. Для этого в кровеносный сосуд вводят медицинскую иглу, соединенную с вакуумированной пробиркой. В ходе проведения забора крови на входе иглы внутри вены осуществляют быстрые периодические колебания давления, которые создают путем многократного частичного пережатия кровеносного сосуда посредством вибратора или низкочастотного акустического излучателя. За счет этого формируют переменный во времени осциллирующий поток крови через иглу и фазовый сдвиг между быстрыми периодическими колебаниями давления и пульсацией, по крайней мере, одного из трех параметров: скорости вытекания крови из иглы в вакуумированную пробирку, уровня крови в вакуумированной пробирке и давления газа в незаполненной части вакуумированной пробирки. Измерения проводят с помощью низкочастотного акустического датчика, соединенного с фазометром или лучевым осциллографом. По результатам полученных измерений частотно-зависимого фазового сдвига рассчитывают вязкость крови. Способ обеспечивает точное измерение значения вязкости крови при одновременном сокращении времени измерения за счет объективной оценки истинного значения вязкости крови без использования дополнительных данных, характеризующих объем протекающей крови и длину трубки. 5 з.п. ф-лы, 1 ил.

Изобретение относится к области биомедицинских технологий, касается способа определения коэффициента вязкости крови с использованием стандартного медицинского лабораторного оборудования, которое может быть использовано для гемореологического экспресс-анализа, непосредственно во время процедуры забора крови для лабораторных анализов осуществлять определение (замер) вязкости крови - важного информативного и диагностического показателя как самой крови и сосудистой системы, так и некоторых органов, изменяющих при заболеваниях реологические свойства крови. Способ определения коэффициента вязкости крови с использованием капиллярных трубок включает регистрацию отсчетных значений занимаемого кровью положения в этих капиллярных трубках в выбранные моменты времени, определяемые математической формулой, определяющей значение вязкости (коэффициента вязкости) крови через полученные отсчетные значения. Причем регистрацию отсчетных значений расстояний, пройденных кровью в капиллярной трубке к заданным последовательным моментам времени, осуществляют в процессе венепункции. При этом выполняют две серии замеров с использованием для каждой серии замеров разного, но известного пониженного по сравнению с атмосферным давления, создаваемого на выходном конце капиллярной трубки путем присоединения к нему вакуумированной пробирки с нужным давлением внутри, полученные отсчетные значения расстояния, проходимого кровью по капиллярной трубке в последовательные моменты времени, одинаковые для обеих серий замеров, обрабатывают согласно математической формуле η = R 2 4 ( ( p в о з д ) 1 − ( p в о з д ) 2 ) ⋅ t i ( l 2 ( t i ) ) 2 − ( l 2 ( t i ) ) 1 , где η - коэффициент вязкости крови, R - внутренний радиус капиллярной трубки, (рвозд)1 - давление в 1-ой вакуумированной пробирке для 1-й серии замеров, (рвозд)2 - давление во 2-й вакуумированной пробирке для 2-й серии замеров, ti - моменты времени (одни и те же для обеих серий замеров) в процессе протекания крови по капиллярной трубке, в которые производятся замеры пройденного кровью расстояния, (l2(ti))1 - квадраты расстояний, пройденных кровью по капиллярной трубке к моментам времени ti в первой серии замеров, (l2(ti))2 - квадраты расстояний, пройденных кровью по капиллярной трубке к моментам времени ti во второй серии замеров. Техническим результатом является повышение точности, сокращение времени проведения исследования и его упрощение. 3 з.п. ф-лы, 1 ил.

Изобретение относится к области сейсморазведки и может быть использовано для поиска углеводородов под дном морей и океанов, в том числе и в ледовых условиях на шельфе Северных морей. Согласно изобретению применяют сейсмогидроакустические приемные системы с нулевой плавучестью, которые размещают не на дне, а в водном слое над поверхностью дна. Сейсмогидроакустические приемные системы дают полную информацию о сейсмогидроакустическом поле в точке измерений. С их помощью производится прием сигналов для аппаратурного анализа амплитудных спектров всех составляющих колебательной скорости по трем осям координат и гидроакустического давления, что позволяет вычислить амплитудные спектры, а также активную и реактивную составляющие спектра мощности этих составляющих. Технический результат - увеличение точности определения расположения месторождений углеводородов. 1 з.п.ф-лы, 7 ил.

Использование: изобретение относится к устройствам для сейсморазведки месторождений углеводородов на акватории Арктического шельфа. Сущность: подвижная подводная автономная сейсмогидроакустическая станция разведки углеводородов на акватории Арктического шельфа имеет прочный корпус обтекаемой формы, энергосиловую установку, движитель, гироскоп, измеритель пути, эхолот, датчик глубины, локатор сигналов гидроакустического маяка, средства регулирования плавучести и бортовой компьютер с программным устройством управления перемещением станции из одной точки моря в другую, зависанием, спуском на дно, подъемом со дна на заданное заглубление и на поверхность моря. Технический результат: создание подвижной подводной автономной сейсмогидроакустической станция разведки углеводородов, способной самостоятельно перемещаться по заданной программе в исследуемые точки моря, зависать над ними, опускаться на дно и подниматься со дна на заданную глубину при одновременном снижении собственных сейсмогидроакустических помех. 1 ил.
Изобретение относится к области нанотехнологий и может быть использовано для изготовления упорядоченных наноструктур, используемых в микро- и наноэлектронике, оптике, нанофотонике, биологии и медицине

Изобретение относится к области нанотехнологий и может быть использовано для формирования наноструктур из испаряемой микрокапли воздействием акустических полей

 


Наверх